Attached is a copy of Revision 19 to Hartzell Propeller Inc. Manual 145.

<table>
<thead>
<tr>
<th>Remove</th>
<th>Insert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page No.</td>
<td>Page No.</td>
</tr>
</tbody>
</table>

NOTE 1: When the manual revision has been inserted in the manual, make a record of the information required on the Record of Revisions page in this manual.

NOTE 2: Pages distributed in this revision may include pages from previous revisions if they are on the opposite side of revised page. This is done as a convenience to those users who wish to print a two-sided copy of the new revision.

This page may be discarded after proper filing of the revision.
Propeller Owner's Manual and Logbook

“Compact” and "Lightweight Compact" Models with Composite Blades

Compact Constant Speed, Non-counterweighted
()HC-()()Y()-1()

Compact Constant Speed and Feathering
HC-()()Y()-2()

Compact Constant Speed, Counterweighted
()HC-()()Y()-4()

Lightweight Compact Constant Speed, Non-counterweighted
()HC-()()Y1()-1()

Hartzell Propeller Inc.
One Propeller Place
Piqua, OH 45356-2634 U.S.A.
Ph: 937-778-4200 (Hartzell Propeller Inc.)
Ph: 937-778-4379 (Product Support)
Product Support Fax: 937-778-4215
As a fellow pilot, I urge you to read this Manual thoroughly. It contains a wealth of information about your new propeller.

The propeller is among the most reliable components of your airplane. It is also among the most critical to flight safety. It therefore deserves the care and maintenance called for in this Manual. Please give it your attention, especially the section dealing with Inspections and Checks.

Thank you for choosing a Hartzell propeller. Properly maintained it will give you many years of reliable service.

Jim Brown
Chairman, Hartzell Propeller Inc.
People who fly should recognize that various types of risks are involved; and they should take all precautions to minimize them, since they cannot be eliminated entirely. The propeller is a vital component of the aircraft. A mechanical failure of the propeller could cause a forced landing or create vibrations sufficiently severe to damage the aircraft, possibly causing it to become uncontrollable.

Propellers are subject to constant vibration stresses from the engine and airstream, which are added to high bending and centrifugal stresses.

Before a propeller is certified as being safe to operate on an airplane, an adequate margin of safety must be demonstrated. Even though every precaution is taken in the design and manufacture of a propeller, history has revealed rare instances of failures, particularly of the fatigue type.

It is essential that the propeller is properly maintained according to the recommended service procedures and a close watch is exercised to detect impending problems before they become serious. Any grease or oil leakage, loss of air pressure, unusual vibration, or unusual operation should be investigated and repaired, as it could be a warning that something serious is wrong.
For operators of uncertified or experimental aircraft an even greater level of vigilance is required in the maintenance and inspection of the propeller. Experimental installations often use propeller-engine combinations that have not been tested and approved. In these cases, the stress on the propeller and, therefore, its safety margin is unknown. Failure could be as severe as loss of propeller or propeller blades and cause loss of propeller control and/or loss of aircraft control.

Hartzell Propeller Inc. follows FAA regulations for propeller certification on certificated aircraft. Experimental aircraft may operate with unapproved engines or propellers or engine modifications to increase horsepower, such as unapproved crankshaft damper configurations or high compression pistons. These issues affect the vibration output of the engine and the stress levels on the propeller. Significant propeller life reduction and failure are real possibilities.

Frequent inspections are strongly recommended if operating with a non-certificated installation; however, these inspections may not guarantee propeller reliability, as a failing device may be hidden from the view of the inspector. Propeller overhaul is strongly recommended to accomplish periodic internal inspection.

Visually examine composite blades for cracks. Inspect hubs, with particular emphasis on each blade arm for cracks. Eddy current equipment is recommended for hub inspection, since cracks are usually not apparent.
Revision 19, dated December 2019, incorporates the following:

Front matter (Cover, Revision Highlights, etc.), has been revised to match this revision.

All Hartzell Propeller Inc. de-ice and anti-icing system information is now found in Hartzell Ice Protection System Manual 180 (30-61-80). Revised manual references where applicable.

Minor language/format changes and renumbering, if applicable are marked with a revision bar, but are not listed below.

• DESCRIPTION AND OPERATION
 • Revised the section, “System Overview”
 • Revised the section, “Propeller Model Designation”
 • Revised Table 2-1, “Propeller Model Designations”
 • Added the section, “Propeller Blades”
 • Revised Table 2-2, “Composite Blade Model Designations”
 • Revised the section, “Theory of Operation”
 • Revised the section, “Governor Model Designation”
 • Added the section, “Unfeathering Accumulators”
 • Revised the section, “Propeller Ice Protection Systems”

• INSTALLATION AND REMOVAL
 • Revised the section, “Pre-installation”
 • Added the section, “Propeller Mounting Hardware and Torque Information”
 • Revised the section, “Bulkhead Installation” and added/revised applicable figures and tables
 • Revised Figure 3-8, “F Flange Propeller Mounting”
 • Added Figure 3-9, “Safety Wire Installation”
 • Added the section, “Damper Installation”
 • Added Figure 3-13, “Damper Installation”
 • Revised Figure 3-15, “Two-Piece Spinner Mounting (Procedure 1)”
REVISION 19 HIGHLIGHTS, CONTINUED

• TESTING AND TROUBLESHOOTING
 • Added the section, “Operational Checks”
 • Added the section, “Operational Checks and Troubleshooting”
 • Revised the section, “Troubleshooting”
 • Revised the section, “Failure to Feather”
 • Revised the section, “Vibration”

• INSPECTION AND CHECK
 • Revised the section, “Important Information”
 • Revised the section, “Propeller Blades”
 • Revised the section, “Spinner Assembly and Blade Retention Components”
 • Added the section, “Grease/Oil Leakage”
 • Added the section, “Initial Run-Up”
 • Added the section, “Additional Information”
 • Revised the section, “Initial Run-Up”
 • Revised the section, “Periodic Inspections”
 • Revised the section, “Periodic Maintenance”
 • Added the section, “Periodic Coin-Tap Inspections for Composite Blades”
 • Revised the section, “Airworthiness Limitations”
 • Revised the section, “Blade Damage”
 • Revised the section, “Grease/Oil Leakage”
 • Revised the section, “Vibration”
 • Revised the section, “Loose Blades”
 • Revised the section, “Corrosion”
 • Revised the section, “Spinner Damage”
 • Revised the section, “Propeller Ice Protection System”
 • Revised the section, “Overspeed/Overtorque”
 • Revised the section, “Lightning Strike”
 • Revised the section, “Foreign Object Strike/Ground Strike”
 • Revised the section, “Fire/Heat Damage”
 • Added the section, “Sudden Stoppage”
 • Added the section, “Engine Oil Contamination”
 • Revised the section, “Important Information”
 • Added the section, “Composite Blades”
REVISION 19 HIGHLIGHTS, CONTINUED

• MAINTENANCE PRACTICES
 • Revised the section, “Cleaning”
 • Revised the section, “General Cleaning”
 • Revised the section, “Spinner Cleaning and Polishing”
 • Revised the section, “Lubrication Intervals”
 • Revised Figure 6-2, “Lubrication Fittings/Hole Plugs”
 • Revised the section, “Lubrication Procedure”
 • Revised the section, “Approved Lubricants”
 • Added the section, “Inspection Requirements”
 • Added the section, “Damage Evaluation and Repair Limits”
 • Added the section, “Blade Repairs”
 • Added the section, “Important Information”
 • Revised the section, “Paint”
 • Revised the section, “Procedure”
 • Revised the section, “High Pitch (Min. RPM) Stop Adjustment”
 • Added the section, “Feathering Pitch Stop Settings”
 • Revised the section, “Start Lock Adjustment”
 • Revised Table 6-3, “Erosion Tape Length (Blades without De-ice/Anti-icing Boot Only”
 • Revised the section, “General”
 • Added the section, “Maintenance Information”
REVISION 19 HIGHLIGHTS, CONTINUED

• ANTI-ICE AND DE-ICE SYSTEMS
 • Revised the section, “Anti-Ice System Description”
 • Revised the section, “Overview of an Anti-ice System”
 • Revised the section, “Components of an Anti-ice System”
 • Revised the section, “Anti-ice System Operation”
 • Revised the section, “De-ice System Description”
 • Revised the section, “Overview of a De-ice System”
 • Revised the section, “Components of a De-ice System”
 • Revised the section, “De-ice System Operation”
 • Added the section, “Operational Checks”
 • Added the section, “Troubleshooting”
 • Added the section, “Periodic Inspections”

• RECORDS
 • Revised the section, “Record Keeping”
 • Revised the section, “Blade Damage Repair Sheets”
1. Introduction
 A. General
 (1) This is a list of current revisions that have been issued against this manual. Please compare it to the RECORD OF REVISIONS page to make sure that all revisions have been added to the manual.
 B. Components
 (1) Revision No. indicates the revisions incorporated in this manual.
 (2) Issue Date is the date of the revision.
 (3) Comments indicates the level of the revision.
 (a) New Issue is a new manual distribution. The manual is distributed in its entirety. All the page revision dates are the same and no change bars are used.
 (b) Reissue is a revision to an existing manual that includes major content and/or major format changes. The manual is distributed in its entirety. All the page revision dates are the same and no change bars are used.
 (c) Major Revision is a revision to an existing manual that includes major content or minor content changes over a large portion of the manual. The manual is distributed in its entirety. All the page revision dates are the same, but change bars are used to indicate the changes incorporated in the latest revision of the manual.
 (d) Minor Revision is a revision to an existing manual that includes minor content changes to the manual. Only the revised pages of the manual are distributed. Each page retains the date and the change bars associated with the last revision to that page.
<table>
<thead>
<tr>
<th>Revision No.</th>
<th>Issue Date</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td>Mar/99</td>
<td>New Issue</td>
</tr>
<tr>
<td>Rev. 1</td>
<td>Mar/04</td>
<td>Minor Revision</td>
</tr>
<tr>
<td>Rev. 2</td>
<td>Jun/06</td>
<td>Minor Revision</td>
</tr>
<tr>
<td>Rev. 3</td>
<td>Jul/06</td>
<td>Minor Revision</td>
</tr>
<tr>
<td>Rev. 4</td>
<td>Dec/06</td>
<td>Minor Revision</td>
</tr>
<tr>
<td>Rev. 5</td>
<td>Oct/08</td>
<td>Minor Revision</td>
</tr>
<tr>
<td>Rev. 6</td>
<td>Nov/08</td>
<td>Minor Revision</td>
</tr>
<tr>
<td>Rev. 7</td>
<td>Oct/09</td>
<td>Minor Revision</td>
</tr>
<tr>
<td>Rev. 8</td>
<td>Jul/10</td>
<td>Minor Revision</td>
</tr>
<tr>
<td>Rev. 9</td>
<td>Jun/11</td>
<td>Minor Revision</td>
</tr>
<tr>
<td>Rev. 10</td>
<td>Oct/11</td>
<td>Minor Revision</td>
</tr>
<tr>
<td>Rev. 11</td>
<td>Dec/12</td>
<td>Minor Revision</td>
</tr>
<tr>
<td>Rev 12</td>
<td>May/13</td>
<td>Minor Revision</td>
</tr>
<tr>
<td>Rev 13</td>
<td>Oct/13</td>
<td>Minor Revision</td>
</tr>
<tr>
<td>Rev 14</td>
<td>Mar/14</td>
<td>Minor Revision</td>
</tr>
<tr>
<td>Rev 15</td>
<td>Mar/15</td>
<td>Minor Revision</td>
</tr>
<tr>
<td>Rev 16</td>
<td>Nov/16</td>
<td>Minor Revision</td>
</tr>
<tr>
<td>Rev 17</td>
<td>May/17</td>
<td>Minor Revision</td>
</tr>
<tr>
<td>Rev 18</td>
<td>Nov/17</td>
<td>Minor Revision</td>
</tr>
<tr>
<td>Rev. 19</td>
<td>Dec/19</td>
<td>Major Revision</td>
</tr>
<tr>
<td>Rev. No.</td>
<td>Issue Date</td>
<td>Date Inserted</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Orig.</td>
<td>Mar/99</td>
<td>Mar/99</td>
</tr>
<tr>
<td>Rev. 1</td>
<td>Mar/04</td>
<td>Mar/04</td>
</tr>
<tr>
<td>Rev. 2</td>
<td>Jun/06</td>
<td>Jun/06</td>
</tr>
<tr>
<td>Rev. 3</td>
<td>Jul/06</td>
<td>Jul/06</td>
</tr>
<tr>
<td>Rev. 4</td>
<td>Dec/06</td>
<td>Dec/06</td>
</tr>
<tr>
<td>Rev. 5</td>
<td>Oct/08</td>
<td>Oct/08</td>
</tr>
<tr>
<td>Rev. 6</td>
<td>Nov/08</td>
<td>Nov/08</td>
</tr>
<tr>
<td>Rev. 7</td>
<td>Oct/09</td>
<td>Oct/09</td>
</tr>
<tr>
<td>Rev. 8</td>
<td>Jul/10</td>
<td>Jul/10</td>
</tr>
<tr>
<td>Rev. 9</td>
<td>Jun/11</td>
<td>Jun/11</td>
</tr>
<tr>
<td>Rev. 10</td>
<td>Oct/11</td>
<td>Oct/11</td>
</tr>
<tr>
<td>Rev. 11</td>
<td>Dec/12</td>
<td>Dec/12</td>
</tr>
<tr>
<td>Rev. 12</td>
<td>May/13</td>
<td>May/13</td>
</tr>
<tr>
<td>Rev. 13</td>
<td>Oct/13</td>
<td>Oct/13</td>
</tr>
<tr>
<td>Rev. 14</td>
<td>Mar/14</td>
<td>Mar/14</td>
</tr>
<tr>
<td>Rev. 15</td>
<td>Mar/15</td>
<td>Mar/15</td>
</tr>
<tr>
<td>Rev. 16</td>
<td>Nov/16</td>
<td>Nov/16</td>
</tr>
<tr>
<td>Rev. 17</td>
<td>May/17</td>
<td>May/17</td>
</tr>
<tr>
<td>Rev. 18</td>
<td>Nov/17</td>
<td>Nov/17</td>
</tr>
<tr>
<td>Rev. 19</td>
<td>Dec/19</td>
<td></td>
</tr>
<tr>
<td>Rev. No.</td>
<td>Issue Date</td>
<td>Date Inserted</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR No.</td>
<td>Issue Date</td>
<td>Date Inserted</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Record of Temporary Revisions

<table>
<thead>
<tr>
<th>TR No.</th>
<th>Issue Date</th>
<th>Date Inserted</th>
<th>By</th>
<th>Date Removed</th>
<th>By</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Propeller Owner's Manual

61-00-45

Rev. 19 Dec/19
CAUTION 1: DO NOT USE OBSOLETE OR OUTDATED INFORMATION. PERFORM ALL INSPECTIONS OR WORK IN ACCORDANCE WITH THE MOST RECENT REVISION OF THE SERVICE DOCUMENT. INFORMATION CONTAINED IN A SERVICE DOCUMENT MAY BE SIGNIFICANTLY CHANGED FROM EARLIER REVISIONS. USE OF OBSOLETE INFORMATION MAY CREATE AN UNSAFE CONDITION THAT MAY RESULT IN DEATH, SERIOUS BODILY INJURY, AND/OR SUBSTANTIAL PROPERTY DAMAGE. REFER TO THE APPLICABLE SERVICE DOCUMENT INDEX FOR THE MOST RECENT REVISION LEVEL OF THE SERVICE DOCUMENT.

CAUTION 2: THE INFORMATION FOR THE DOCUMENTS LISTED INDICATES THE REVISION LEVEL AND DATE AT THE TIME THAT THE DOCUMENT WAS INITIALLY INCORPORATED INTO THIS MANUAL. INFORMATION CONTAINED IN A SERVICE DOCUMENT MAY BE SIGNIFICANTLY CHANGED FROM EARLIER REVISIONS. REFER TO THE APPLICABLE SERVICE DOCUMENT INDEX FOR THE MOST RECENT REVISION LEVEL OF THE SERVICE DOCUMENT.

<table>
<thead>
<tr>
<th>Service Document Number</th>
<th>Incorporation Rev/Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Bulletins:</td>
<td></td>
</tr>
<tr>
<td>HC-SB-61-246</td>
<td>Rev. 2 Jun/06</td>
</tr>
<tr>
<td>HC-SB-61-246, R1</td>
<td>Rev. 10 Oct/11</td>
</tr>
<tr>
<td>Service Letters:</td>
<td></td>
</tr>
<tr>
<td>HC-SL-61-194</td>
<td>Rev. 2 Jun/06</td>
</tr>
<tr>
<td>HC-SL-61-200</td>
<td>Rev. 2 Jun/06</td>
</tr>
<tr>
<td>HC-SL-61-187, R3</td>
<td>Rev. 15 Mar/15</td>
</tr>
<tr>
<td>HC-SL-61-230</td>
<td>Rev. 15 Mar/15</td>
</tr>
<tr>
<td>HC-SL-61-185, R3</td>
<td>Rev. 16 Nov/16</td>
</tr>
<tr>
<td>HC-SL-61-354</td>
<td>Rev. 16 Nov/16</td>
</tr>
</tbody>
</table>
(This page is intentionally blank.)
AIRWORTHINESS LIMITATIONS

The Airworthiness Limitations section is FAA approved and specifies maintenance required under 14 CFR §§ 43.16 and 91.403 of the Federal Aviation Regulations unless an alternative program has been FAA approved.

FAA APPROVED

by: ______________________________ date: ____________
Manager, Chicago ACO Branch
Compliance & Airworthiness Division, AIR-7CO
Federal Aviation Administration

<table>
<thead>
<tr>
<th>Rev. No.</th>
<th>Description of Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Adds airworthiness limitation information from Hartzell Overhaul Manual 113B (61-10-13) and Hartzell Overhaul Manual 117D (61-10-17), removes the wording that indicates the inspection of the composite blade assembly, ()7690J can be accomplished on-wing</td>
</tr>
<tr>
<td>12</td>
<td>Revises propeller inspection interval on SMA diesel installations from 500 flight hours to optional 650 flight hours with additional inspections</td>
</tr>
</tbody>
</table>
1. **Replacement Time (Life Limits)**

 A. The FAA establishes specific life limits for certain component parts, as well as the entire propeller. Such limits require replacement of the identified parts after a specified number of hours of use.

 B. The following data summarizes all current information concerning Hartzell life limited parts as related to propeller models affected by this manual. These parts are not life limited on other installations; however, time accumulated toward life limit accrues when first operated on aircraft/engine/propeller combinations listed, and continues regardless of subsequent installations (which may or may not be life limited).

 (1) The following list specifies life limits for blades only. Associated hub parts are not affected. Blade models shown are life limited only on the specified applications.
AIRWORTHINESS LIMITATIONS

<table>
<thead>
<tr>
<th>Aircraft/Engine/Propeller</th>
<th>Blade Life Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aircraft: Mooney PFM</td>
<td>3,000 hours</td>
</tr>
<tr>
<td>Engine: Porsche</td>
<td></td>
</tr>
<tr>
<td>Propeller: BHC-J2YF-1C/B7421</td>
<td></td>
</tr>
<tr>
<td>Aircraft: Aviat Pitts S-2B</td>
<td>12,500 hours</td>
</tr>
<tr>
<td>Engine: Lycoming AEIO-540-D4A5</td>
<td></td>
</tr>
<tr>
<td>Propeller: HC-C3YR-1A/7690C</td>
<td></td>
</tr>
</tbody>
</table>

FAA APPROVED

by: ______________________________ date: ____________

Manager, Chicago ACO Branch
Compliance & Airworthiness Division, AIR-7CO
Federal Aviation Administration
AIRWORTHINESS LIMITATIONS

2. Periodic Inspections

A. Inspect the composite blade assembly, ()7690J installed on aircraft with the SMA SR305 engine, at intervals not greater than 500 flight hours, in accordance with Hartzell Service Bulletin HC-SB-61-266, Rev. 1 or at intervals not greater than 650 flight hours when maintained in accordance with Hartzell Service Bulletin HC-SB-61-266, Rev. 2.

B. Disassemble and inspect Hartzell propeller models HC-()3YR-1()/()7690J installed on aircraft with the SMA SR305 engine at an interval not greater than 500 flight hours, in accordance with Hartzell Service Bulletin HC-SB-61-266, Rev. 1 or at intervals not greater than 650 flight hours when maintained in accordance with Hartzell Service Bulletin HC-SB-61-266, Rev. 2.

C. Disassemble and inspect Hartzell propeller models HC-()3YR-2()/()7690J installed on aircraft with the SMA SR305 engine at an interval not greater than 500 flight hours, in accordance with Hartzell Service Bulletin HC-SB-61-266, Rev. 1 or at intervals not greater than 650 flight hours when maintained in accordance with Hartzell Service Bulletin HC-SB-61-266, Rev. 2.

FAA APPROVED

by: ______________________________ date: ____________
Manager, Chicago ACO Branch
Compliance & Airworthiness Division, AIR-7CO
Federal Aviation Administration
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
<th>Revision</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cover/Inside Cover</td>
<td>Cover/Inside Cover</td>
<td>Rev. 19</td>
<td>Dec/19</td>
</tr>
<tr>
<td>Message</td>
<td>1 thru 4</td>
<td>Rev. 19</td>
<td>Dec/19</td>
</tr>
<tr>
<td>Revision Highlights</td>
<td>1 thru 6</td>
<td>Rev. 19</td>
<td>Dec/19</td>
</tr>
<tr>
<td>Record of Revisions</td>
<td>1 and 2</td>
<td>Rev. 19</td>
<td>Dec/19</td>
</tr>
<tr>
<td>Record of Temporary Revisions</td>
<td>1 and 2</td>
<td>Rev. 19</td>
<td>Dec/19</td>
</tr>
<tr>
<td>Service Documents List</td>
<td>1 and 2</td>
<td>Rev. 19</td>
<td>Dec/19</td>
</tr>
<tr>
<td>Airworthiness Limitations</td>
<td>1 thru 4</td>
<td>Rev. 19</td>
<td>Dec/19</td>
</tr>
<tr>
<td>List of Effective Pages</td>
<td>1 and 2</td>
<td>Rev. 19</td>
<td>Dec/19</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>1 and 2</td>
<td>Rev. 19</td>
<td>Dec/19</td>
</tr>
<tr>
<td>Introduction</td>
<td>1-1 thru 1-34</td>
<td>Rev. 19</td>
<td>Dec/19</td>
</tr>
<tr>
<td>Description and Operation</td>
<td>2-1 thru 2-30</td>
<td>Rev. 19</td>
<td>Dec/19</td>
</tr>
<tr>
<td>Installation and Removal</td>
<td>3-1 thru 3-56</td>
<td>Rev. 19</td>
<td>Dec/19</td>
</tr>
<tr>
<td>Testing and Troubleshooting</td>
<td>4-1 thru 4-14</td>
<td>Rev. 19</td>
<td>Dec/19</td>
</tr>
<tr>
<td>Inspection and Check</td>
<td>5-1 thru 5-32</td>
<td>Rev. 19</td>
<td>Dec/19</td>
</tr>
<tr>
<td>Maintenance Practices</td>
<td>6-1 thru 6-50</td>
<td>Rev. 19</td>
<td>Dec/19</td>
</tr>
<tr>
<td>Anti-Ice and De-Ice Systems</td>
<td>7-1 thru 7-6</td>
<td>Rev. 19</td>
<td>Dec/19</td>
</tr>
<tr>
<td>Records</td>
<td>8-1 thru 8-32</td>
<td>Rev. 19</td>
<td>Dec/19</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MESSAGE</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REVISION HIGHLIGHTS</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RECORD OF REVISIONS</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RECORD OF TEMPORARY REVISIONS</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SERVICE DOCUMENTS LIST</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIRWORTHINESS LIMITATIONS</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIST OF EFFECTIVE PAGES</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DESCRIPTION AND OPERATION</td>
<td>2-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INSTALLATION AND REMOVAL</td>
<td>3-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TESTING AND TROUBLESHOOTING</td>
<td>4-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INSPECTION AND CHECK</td>
<td>5-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAINTENANCE PRACTICES</td>
<td>6-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANTI-ICE AND DE-ICE SYSTEMS</td>
<td>7-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RECORDS</td>
<td>8-1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
INTRODUCTION - CONTENTS

1. General
 - Statement of Purpose
 - Maintenance Practices

2. Airframe or Engine Modifications
 - Propeller Stress Levels
 - Engine Modifications

3. Restrictions and Placards
 - Important Information

4. Reference Publications
 - Hartzell Propeller Inc. Publications
 - Vendor Publications

5. Personnel Requirements
 - Service and Maintenance Procedures in this Manual

6. Special Tooling and Consumable Materials
 - Special Tooling
 - Consumable Materials

7. Safe Handling of Paints and Chemicals
 - Instructions for Use

8. Calendar Limits and Long Term Storage
 - Calendar Limits
 - Long Term Storage

9. Component Life and Overhaul
 - Component Life
 - Overhaul

10. Damage/Repair Types
 - Airworthy/Unairworthy Damage
 - Minor/Major Repair

11. Propeller Critical Parts
 - Propeller Critical Parts
12. Warranty Service

A. Warranty Claims

13. Hartzell Propeller Inc. Contact Information

A. Product Support Department

B. Technical Publication Department

C. Recommended Facilities

14. Definitions

15. Abbreviations
1. **General** (Rev. 1)

 A. **Statement of Purpose**

 (1) This manual has been reviewed and accepted by the FAA. Additionally, the Airworthiness Limitations section of this manual has been approved by the FAA.

 CAUTION: KEEP THIS MANUAL WITH THE PROPELLER OR WITH THE AIRCRAFT ON WHICH IT IS INSTALLED, AT ALL TIMES. THE LOGBOOK RECORD WITHIN THIS MANUAL MUST BE MAINTAINED, RETAINED CONCURRENTLY, AND BECOME A PART OF THE AIRCRAFT AND ENGINE SERVICE RECORDS.

 (2) The information in this manual can be used by qualified personnel to install, operate, and maintain the applicable Hartzell propeller assemblies.

 (a) Additional manuals are available that include overhaul procedures and specifications for the propeller.

 (3) This manual may include multiple design types.

 (a) Parentheses shown in the propeller model designations in this or other Hartzell Propeller Inc. publications indicate letter(s) and/or number(s) that may or may not be present because of different configurations permitted on the various aircraft installations.

 1 Refer to the Description and Operation chapter of this manual for propeller and blade model designation information.

 (4) Where possible, this manual is written in the format specified by ATA iSpec 2200.
B. Maintenance Practices

(1) The propeller and its components are highly vulnerable to damage while they are removed from the engine. Properly protect all components until they are reinstalled on the engine.

(2) Never attempt to move the aircraft by pulling on the propeller.

(3) Avoid the use of blade paddles. If blade paddles must be used, use at least two paddles. Do not put the blade paddle in the area of the de-ice or anti-icing boot when applying torque to a blade assembly. Put the blade paddle in the thickest area of the blade, just outside of the de-ice or anti-icing boot. Use one blade paddle per blade.

(4) Use only the approved consumables, e.g., cleaning agents, lubricants, etc.

(5) Observe applicable torque values during maintenance.

(6) Before installing the propeller on the engine, the propeller must be statically balanced. New propellers are statically balanced at Hartzell Propeller Inc. Overhauled propellers must be statically balanced by a certified propeller repair station with the appropriate rating before return to service.

(a) Dynamic balance is recommended, but may be accomplished at the discretion of the operator, unless specifically required by the airframe or engine manufacturer.

1. Perform dynamic balancing in accordance with the Maintenance Practices chapter of this manual.

2. Additional procedures may be found in the aircraft maintenance manual.

(7) As necessary, use a soft, non-graphite pencil or crayon to make identifying marks on components.

(8) As applicable, follow military standard NASM33540 for safety wire, safety cable, and cotter pin general practices. Use 0.032 inch (0.81 mm) diameter stainless steel safety wire unless otherwise indicated.
(9) The information in this manual revision supersedes data in all previously published revisions of this manual.

(10) The airframe manufacturer’s manuals should be used in addition to the information in this manual due to possible special requirements for specific aircraft applications.

(11) If the propeller is equipped with an ice protection system that uses components supplied by Hartzell Propeller Inc., applicable instructions and technical information for the components can be found in Hartzell Propeller Inc. Ice Protection System Manual 180 (30-61-80).

(12) Propeller ice protection system components not supplied by Hartzell Propeller Inc. are controlled by the applicable TC or STC holder’s Instructions for Continued Airworthiness (ICA).

(13) Approved corrosion protection followed by approved paint must be applied to all composite blades.

(a) For information about the application of corrosion protection and paint, refer to the Maintenance Practices chapter of this manual. Operation of blades without the specified coatings and finishes, i.e., “polished blades”, is not permitted.
2. **Airframe or Engine Modifications** (Rev. 1)

A. Propeller Stress Levels

(1) Propellers are approved vibrationwise on airframe and engine combinations based on tests or analysis of similar installations. This data has demonstrated that propeller stress levels are affected by airframe configuration, airspeed, weight, power, engine configuration, and approved flight maneuvers. Aircraft modifications that can effect propeller stress include, but are not limited to: aerodynamic changes ahead of or behind the propeller, realignment of the thrust axis, increasing or decreasing airspeed limits, increasing or decreasing weight limits (less significant on piston engines), and the addition of approved flight maneuvers (utility and aerobatic).

B. Engine Modifications

(1) Engine modifications can affect the propeller. The two primary categories of engine modifications are those that affect structure and those that affect power. An example of a structural engine modification is the alteration of the crankshaft or damper of a piston engine. Any change to the weight, stiffness, or tuning of rotating components could result in a potentially dangerous resonant condition that is not detectable by the pilot. Most common engine modifications affect the power during some phase of operation. Some modifications increase the maximum power output, while others improve the power available during hot and high operation (flat rating) or at off-peak conditions.

(a) Examples of turbine engine modifications include, but are not limited to: changes to the compressor, power turbine or hot section of a turboprop engine.

(b) Examples of reciprocating engine modifications include, but are not limited to: the addition or alteration of a turbocharger or turbonormalizer, increased compression ratio, increased RPM, altered ignition timing, electronic ignition, full authority digital electronic controls (FADEC), or tuned induction or exhaust.
(2) All such modifications must be reviewed and approved by the propeller manufacturer prior to obtaining approval on the aircraft.

3. Restrictions and Placards (Rev. 1)

A. Important Information

(1) The propellers covered by this manual may have a restricted operating range that requires a cockpit placard.

(a) The restrictions, if present, will vary depending on the propeller, blade, engine, and/or aircraft model.

(b) Review the propeller and aircraft type certificate data sheet (TCDS), Pilot Operating Handbook (POH), and any applicable Airworthiness Directives for specific information.
4. **Reference Publications**

A. Hartzell Propeller Inc. Publications

 (1) Information published in Service Bulletins, Service Letters, Service Advisories, and Service Instructions may supersede information published in this manual. The reader must consult active Service Bulletins, Service Letters, Service Advisories, and Service Instructions for information that may have not yet been incorporated into the latest revision of this manual.

 (2) In addition to this manual, one or more of the following publications are required for information regarding specific recommendations and procedures to maintain propeller assemblies that are included in this manual.

<table>
<thead>
<tr>
<th>Manual No. (ATA No.)</th>
<th>Available at www.hartzellprop.com</th>
<th>Hartzell Propeller Inc. Manual Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/a</td>
<td>Yes</td>
<td>Active Hartzell Propeller Inc. Service Bulletins, Service Letters, Service Instructions, and Service Advisories</td>
</tr>
<tr>
<td>Manual 113B (61-10-13)</td>
<td>-</td>
<td>Compact and Lightweight Compact Non-Feathering (-1) and Aerobatic (-4) Propeller Overhaul and Maintenance Manual</td>
</tr>
<tr>
<td>Manual No. (ATA No.)</td>
<td>Available at www.hartzellprop.com</td>
<td>Hartzell Propeller Inc. Manual Title</td>
</tr>
<tr>
<td>---------------------</td>
<td>----------------------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>Manual 159 (61-02-59)</td>
<td>Yes</td>
<td>Hartzell Propeller Inc. Application Guide</td>
</tr>
<tr>
<td>Manual 165A (61-00-65)</td>
<td>Yes</td>
<td>Hartzell Propeller Inc. Illustrated Tool and Equipment Manual</td>
</tr>
</tbody>
</table>

B. Vendor Publications
None.
5. **Personnel Requirements** (Rev. 1)

A. Service and Maintenance Procedures in this Manual

(1) Personnel performing the service and maintenance procedures in this manual are expected to have the required equipment/tooling, training, and certifications (when required by the applicable Aviation Authority) to accomplish the work in a safe and airworthy manner.

(2) Compliance to the applicable regulatory requirements established by the Federal Aviation Administration (FAA) or international equivalent is mandatory for anyone performing or accepting responsibility for the inspection and/or repair of any Hartzell Propeller Inc. product.

(a) Maintenance records must be kept in accordance with the requirements established by the Federal Aviation Administration (FAA) or international equivalent.

(b) Refer to Federal Aviation Regulation (FAR) Part 43 for additional information about general aviation maintenance requirements.
6. **Special Tooling and Consumable Materials** (Rev. 1)

 A. **Special Tooling**

 (1) Special tooling may be required for procedures in this manual. For further tooling information, refer to Hartzell Propeller Inc. Illustrated Tool and Equipment Manual 165A (61-00-65).

 (a) Tooling reference numbers appear with the prefix “TE” directly following the tool name to which they apply. For example, a template that is reference number 133 will appear as: template TE133.

 B. **Consumable Materials**

 (a) Consumable material reference numbers appear with the prefix “CM” directly following the material to which they apply. For example, an adhesive that is reference number 16 will appear as: adhesive CM16. Only the material(s) specified can be used.

7. **Safe Handling of Paints and Chemicals** (Rev. 1)

 A. **Instructions for Use**

 (1) Always use caution when handling or being exposed to paints and/or chemicals during propeller overhaul and/or maintenance procedures.

 (2) Before using paint or chemicals, always read the manufacturer’s label on the container(s) and follow specified instructions and procedures for storage, preparation, mixing, and/or application.

 (3) Refer to the product’s Material Safety Data Sheet (MSDS) for detailed information about the physical properties, health, and physical hazards of any paint or chemical.
8. **Calendar Limits and Long Term Storage** (Rev. 1)

A. **Calendar Limits**

 (1) The effects of exposure to the environment over a period of time create a need for propeller overhaul regardless of flight time.

 (2) A calendar limit between overhauls is specified in Hartzell Propeller Inc. Service Letter HC-SL-61-61Y and in the propeller owner’s manual.

 (3) Experience has shown that special care, such as keeping an aircraft in a hangar, is not sufficient to permit extension of the calendar limit.

 (4) The start date for the calendar limit is when the propeller is first installed on an engine.

 (5) The calendar limit is not interrupted by subsequent removal and/or storage.

 (6) The start date for the calendar limit must not be confused with the warranty start date, that is with certain exceptions, the date of installation by the first retail customer.

B. **Long Term Storage**

 (1) Propellers that have been in storage have additional inspection requirements before installation. Refer to the Packaging and Storage chapter of Hartzell Propeller Inc. Standard Practices Manual 202A (61-01-02).
9. Component Life and Overhaul (Rev. 1)

WARNING: CERTAIN PROPELLER COMPONENTS USED IN NON-AVIATION APPLICATIONS ARE MARKED WITH DIFFERENT PART NUMBERS TO DISTINGUISH THEM FROM COMPONENTS USED IN AVIATION APPLICATIONS. DO NOT ALTER THE PART NUMBERS SHOWN ON PARTS DESIGNATED FOR NON-AVIATION APPLICATIONS OR OTHERWISE APPLY THOSE PARTS FOR USE ON AVIATION APPLICATIONS.

A. Component Life

(1) Component life is expressed in terms of hours of service (Time Since New, TSN) and in terms of hours of service since overhaul (Time Since Overhaul, TSO).

NOTE: TSN/TSO is considered as the time accumulated between rotation and landing, i.e., flight time.

(2) Time Since New (TSN) and Time Since Overhaul (TSO) records for the propeller hub and blades must be maintained in the propeller logbook.

(3) Both TSN and TSO are necessary for defining the life of the component. Certain components or in some cases an entire propeller, may be “life limited”, which means that they must be replaced after a specified period of use (TSN).

 (a) It is a regulatory requirement that a record of the Time Since New (TSN) be maintained for all life limited parts.

 (b) Refer to the Airworthiness Limitations chapter in the applicable Hartzell Propeller Inc. Owner’s Manual for a list of life limited components.

(4) When a component or assembly undergoes an overhaul, the TSO is returned to zero hours.

 (a) Time Since New (TSN) can never be returned to zero.

 (b) Repair without overhaul does not affect TSO or TSN.
(5) Blades and hubs are sometimes replaced while in service or at overhaul.

(a) Maintaining separate TSN and TSO histories for a replacement hub or blade is required.

(b) Hub replacement

1 If the hub is replaced, the replacement hub serial number must be recorded (the entry signed and dated) in the propeller logbook.

2 The propeller will be identified with the serial number of the replacement hub.

3 The TSN and TSO of the replacement hub must be recorded and maintained in the propeller logbook.

4 If tracking any component(s) other than the hub/blades, maintain these TSN/TSO records separately in the propeller logbook.

NOTE: Hub replacement does not affect the TSN/TSO of any other propeller components.

B. Overhaul

(1) Overhaul is the periodic disassembly, cleaning, inspecting, repairing as necessary, reassembling, and testing in accordance with approved standards and technical data approved by Hartzell Propeller Inc.
(2) The overhaul interval is based on hours of service, i.e., flight time, or on calendar time.
 (a) Overhaul intervals are specified in the applicable Hartzell Propeller Inc. propeller owner’s manual and Hartzell Service Letter HC-SL-61-61Y.
 (b) At such specified periods, the propeller hub assembly and the blade assemblies must be completely disassembled and inspected for cracks, wear, corrosion, and other unusual or abnormal conditions.

(3) Overhaul must be completed in accordance with the latest revision of the applicable component maintenance manual and other publications applicable to, or referenced in, the component maintenance manual.
 (a) Parts that are not replaced at overhaul must be inspected in accordance with the check criteria in the applicable Hartzell Propeller Inc. component maintenance manual.
 (b) Parts that must be replaced at overhaul are identified by a “Y” in the O/H column of the Illustrated Parts List in the applicable Hartzell Propeller Inc. component maintenance manual.

(4) The information in this manual supersedes data in all previously published revisions of this manual.

10. Damage/Repair Types (Rev. 1)
 A. Airworthy/Unairworthy Damage
 (1) Airworthy damage is a specific condition to a propeller component that is within the airworthy damage limits specified in the applicable Hartzell Propeller Inc. component maintenance manual.
 (a) Airworthy damage does not affect the safety or flight characteristics of the propeller and conforms to its type design.
 (b) Airworthy damage does not require repair before further flight, but should be repaired as soon as possible to prevent degradation of the damage.
(2) Unairworthy damage is a specific condition to a propeller component that exceeds the airworthy damage limits specified in the applicable Hartzell Propeller Inc. component maintenance manual.

(a) Unairworthy damage can affect the safety or flight characteristics of the propeller and does not conform to its type design.

(b) Unairworthy damage must be repaired before the propeller is returned to service.

B. Minor/Major Repair

(1) Minor Repair

(a) Minor repair is that which may be done safely in the field by a certified aircraft mechanic.

1 For serviceable limits and repair criteria for Hartzell propeller components, refer to the applicable Hartzell Propeller Inc. component maintenance manual.

(2) Major Repair

(a) Major repair cannot be done by elementary operations.

(b) Major repair work must be accepted by an individual that is certified by the Federal Aviation Administration (FAA) or international equivalent.

1 Hartzell recommends that individuals performing major repairs also have a Factory Training Certificate from Hartzell Propeller Inc.

2 The repair station must meet facility, tooling, and personnel requirements and is required to participate in Hartzell Propeller Inc. Sample Programs as defined in the Approved Facilities chapter of Hartzell Propeller Inc. Standard Practices Manual 202A (61-01-02).
11. **Propeller Critical Parts** (Rev. 1)

 A. **Propeller Critical Parts**

 (1) Procedures in this manual may involve Propeller Critical Parts (PCP).

 (a) These procedures have been substantiated based on Engineering analysis that expects this product will be operated and maintained using the procedures and inspections provided in the Instructions for Continued Airworthiness (ICA) for this product.

 (b) Refer to the Illustrated Parts List chapter in the applicable Hartzell Propeller Inc. maintenance manual to identify the Propeller Critical Parts.

 (2) Numerous propeller system parts can produce a propeller Major or Hazardous effect, even though those parts may not be considered as Propeller Critical Parts.

 (a) The operating and maintenance procedures and inspections provided in the ICA for this product are, therefore, expected to be accomplished for all propeller system parts.

12. **Warranty Service** (Rev. 1)

 A. **Warranty Claims**

 (1) If you believe you have a warranty claim, contact the Hartzell Propeller Inc. Product Support Department to request a *Warranty Application* form. Complete this form and return it to Hartzell Product Support for evaluation **before proceeding with repair or inspection work.** Upon receipt of this form, the Hartzell Product Support Department will provide instructions on how to proceed.

 (a) For Hartzell Propeller Inc. Product Support Department contact information, refer to the “Contact Information” section in this chapter.
13. Hartzell Propeller Inc. Contact Information (Rev. 2)

A. Product Support Department

(1) Contact the Product Support Department of Hartzell Propeller Inc. about any maintenance problems or to request information not included in this publication.

NOTE: When calling from outside the United States, dial (001) before dialing the telephone numbers below.

(a) Hartzell Propeller Inc. Product Support may be reached during business hours (8:00 a.m. through 5:00 p.m., United States Eastern Time) at (937) 778-4379 or at (800) 942-7767, toll free from the United States and Canada.

(b) Hartzell Propeller Inc. Product Support can also be reached by fax at (937) 778-4215, and by e-mail at techsupport@hartzellprop.com.

(c) After business hours, you may leave a message on our 24 hour product support line at (937) 778-4376 or at (800) 942-7767, toll free from the United States and Canada.

1 A technical representative will contact you during normal business hours.

2 Urgent AOG support is also available 24 hours per day, seven days per week via this message service.

(d) Additional information is available on the Hartzell Propeller Inc. website at www.hartzellprop.com.
B. Technical Publications Department

(1) For Hartzell Propeller Inc. service literature and revisions, contact:
Hartzell Propeller Inc.
Attn: Technical Publications Department
One Propeller Place
Piqua, Ohio 45356-2634 U.S.A.

Telephone: 937.778.4200
Fax: 937.778.4215
E-mail: manuals@hartzellprop.com

C. Recommended Facilities

(1) Hartzell Propeller Inc. recommends using Hartzell-approved distributors and repair facilities for the purchase, repair, and overhaul of Hartzell propeller assemblies or components.

(2) Information about the Hartzell Propeller Inc. worldwide network of aftermarket distributors and approved repair facilities is available on the Hartzell website at www.hartzellprop.com.
14. **Definitions** (Rev. 2)

A basic understanding of the following terms will assist in maintaining and operating Hartzell Propeller Inc. propeller systems.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annealed</td>
<td>Softening of material due to overexposure to heat</td>
</tr>
<tr>
<td>Aviation Certified</td>
<td>Intended for FAA or international equivalent type certificated aircraft applications. A TC and PC number must be stamped on the hub, and a PC number must be stamped on blades.</td>
</tr>
<tr>
<td>Aviation Experimental</td>
<td>Intended for aircraft/propeller applications not certified by the FAA or international equivalent. Products marked with an “X” at or near the end of the model number or part number are not certified by the FAA or international equivalent and are not intended to use on certificated aircraft.</td>
</tr>
<tr>
<td>Beta Operation</td>
<td>A mode of pitch control that is directed by the pilot rather than by the propeller governor</td>
</tr>
<tr>
<td>Beta Range</td>
<td>Blade angles between low pitch and maximum reverse blade angle</td>
</tr>
<tr>
<td>Beta System</td>
<td>Parts and/or equipment related to operation (manual control) of propeller blade angle between low pitch blade angle and full reverse blade angle</td>
</tr>
<tr>
<td>Blade Angle</td>
<td>Measurement of blade airfoil location described as the angle between the blade airfoil and the surface described by propeller rotation</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>----------------------</td>
<td>--</td>
</tr>
<tr>
<td>Blade Pitch Axis</td>
<td>An imaginary reference line through the length of a blade around which the blade rotates</td>
</tr>
<tr>
<td>Blade Station</td>
<td>Refers to a location on an individual blade for blade inspection purposes. It is a measurement from the blade “zero” station to a location on a blade, used to apply blade specification data in blade overhaul manuals.</td>
</tr>
<tr>
<td>Note:</td>
<td>Do not confuse blade station with reference blade radius; they may not originate at the same location.</td>
</tr>
<tr>
<td>Blemish</td>
<td>An imperfection with visible attributes, but having no impact on safety or utility</td>
</tr>
<tr>
<td>Brinelling</td>
<td>A depression caused by failure of the material in compression</td>
</tr>
<tr>
<td>Bulge</td>
<td>An outward curve or bend</td>
</tr>
<tr>
<td>Camber</td>
<td>The surface of the blade that is directed toward the front of the aircraft. It is the low pressure, or suction, side of the blade. The camber side is convex in shape over the entire length of the blade.</td>
</tr>
<tr>
<td>Chord</td>
<td>A straight line distance between the leading and trailing edges of an airfoil</td>
</tr>
<tr>
<td>Chordwise</td>
<td>A direction that is generally from the leading edge to the trailing edge of an airfoil</td>
</tr>
<tr>
<td>Co-bonded</td>
<td>The act of bonding a composite laminate and simultaneously curing it to some other prepared surface</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Composite Material</td>
<td>Kevlar®, carbon, or fiberglass fibers bound together with, or encapsulated within an epoxy resin</td>
</tr>
<tr>
<td>Compression Rolling</td>
<td>A process that provides improved strength and resistance to fatigue</td>
</tr>
<tr>
<td>Constant Force</td>
<td>A force that is always present in some degree when the propeller is operating</td>
</tr>
<tr>
<td>Constant Speed</td>
<td>A propeller system that employs a governing device to maintain a selected engine RPM</td>
</tr>
<tr>
<td>Corrosion (Aluminum)</td>
<td>The chemical or electrochemical attack by an acid or alkaline that reacts with the protective oxide layer and results in damage of the base aluminum. Part failure can occur from corrosion due to loss of structural aluminum converted to corrosion product, pitting, a rough etched surface finish, and other strength reduction damage caused by corrosion.</td>
</tr>
<tr>
<td>Corrosion (Steel)</td>
<td>Typically, an electrochemical process that requires the simultaneous presence of iron (component of steel), moisture and oxygen. The iron is the reducing agent (gives up electrons) while the oxygen is the oxidizing agent (gains electrons). Iron or an iron alloy such as steel is oxidized in the presence of moisture and oxygen to produce rust. Corrosion is accelerated in the presence of salty water or acid rain. Part failure can occur from corrosion due to loss of structural steel converted to corrosion product, pitting, a rough etched surface finish and other strength reduction damage caused by corrosion.</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Corrosion Product (Aluminum)</td>
<td>A white or dull gray powdery material that has an increased volume appearance (compared to non-corroded aluminum). Corrosion product is not to be confused with damage left in the base aluminum such as pits, worm holes, and etched surface finish.</td>
</tr>
<tr>
<td>Corrosion Product (Steel)</td>
<td>When iron or an iron alloy such as steel corrodes, a corrosion product known as rust is formed. Rust is an iron oxide which is reddish in appearance and occupies approximately six times the volume of the original material. Rust is flakey and crumbly and has no structural integrity. Rust is permeable to air and water, therefore the interior metallic iron (steel) beneath a rust layer continues to corrode. Corrosion product is not to be confused with damage left in the base steel such as pits and etched surface finish.</td>
</tr>
<tr>
<td>Crack</td>
<td>Irregularly shaped separation within a material, sometimes visible as a narrow opening at the surface</td>
</tr>
<tr>
<td>Debond</td>
<td>Separation of two materials that were originally bonded together in a separate operation</td>
</tr>
<tr>
<td>Defect</td>
<td>An imperfection that affects safety or utility</td>
</tr>
<tr>
<td>Delamination</td>
<td>Internal separation of the layers of composite material</td>
</tr>
<tr>
<td>Dent</td>
<td>The permanent deflection of the cross section that is visible on both sides with no visible change in cross sectional thickness</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
</tr>
<tr>
<td>Depression</td>
<td>Surface area where the material has been compressed but not removed</td>
</tr>
<tr>
<td>Distortion</td>
<td>Alteration of the original shape or size of a component</td>
</tr>
<tr>
<td>Edge Alignment</td>
<td>Distance from the blade centerline to the leading edge of the blade</td>
</tr>
<tr>
<td>Erosion</td>
<td>Gradual wearing away or deterioration due to action of the elements</td>
</tr>
<tr>
<td>Exposure</td>
<td>Leaving material open to action of the elements</td>
</tr>
<tr>
<td>Face</td>
<td>The surface of the blade that is directed toward the rear of the aircraft. The face side is the high pressure, or thrusting, side of the blade. The blade airfoil sections are normally cambered or curved such that the face side of the blade may be flat or even concave in the midblade and tip region.</td>
</tr>
<tr>
<td>Face Alignment</td>
<td>Distance from the blade centerline to the highest point on the face side perpendicular to the chord line</td>
</tr>
<tr>
<td>Feathering</td>
<td>The capability of blades to be rotated parallel to the relative wind, thus reducing aerodynamic drag</td>
</tr>
<tr>
<td>Fraying</td>
<td>A raveling or shredding of material</td>
</tr>
<tr>
<td>Fretting</td>
<td>Damage that develops when relative motion of small displacement takes place between contacting parts, wearing away the surface</td>
</tr>
<tr>
<td>Gallling</td>
<td>To fret or wear away by friction</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Gouge</td>
<td>Surface area where material has been removed</td>
</tr>
<tr>
<td>Hazardous Propeller Effect</td>
<td>The hazardous propeller effects are defined in Title 14 CFR section 35.15(g)(1)</td>
</tr>
<tr>
<td>Horizontal Balance</td>
<td>Balance between the blade tip and the center of the hub</td>
</tr>
<tr>
<td>Impact Damage</td>
<td>Damage that occurs when the propeller blade or hub assembly strikes, or is struck by, an object while in flight or on the ground</td>
</tr>
<tr>
<td>Inboard</td>
<td>Toward the butt of the blade</td>
</tr>
<tr>
<td>Intergranular Corrosion</td>
<td>Corrosion that attacks along the grain boundaries of metal alloys</td>
</tr>
<tr>
<td>Jog</td>
<td>A term used to describe movement up/down, left/right, or on/off in short incremental motions</td>
</tr>
<tr>
<td>Laminate</td>
<td>To unite composite material by using a bonding material, usually with pressure and heat</td>
</tr>
<tr>
<td>Lengthwise</td>
<td>A direction that is generally parallel to the pitch axis</td>
</tr>
<tr>
<td>Loose Material</td>
<td>Material that is no longer fixed or fully attached</td>
</tr>
<tr>
<td>Low Pitch</td>
<td>The lowest blade angle attainable by the governor for constant speed operation</td>
</tr>
<tr>
<td>Major Propeller Effect</td>
<td>The major propeller effects are defined in Title 14 CFR section 35.15(g)(2)</td>
</tr>
<tr>
<td>Minor Deformation</td>
<td>Deformed material not associated with a crack or missing material</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Monocoque</td>
<td>A type of construction in which the outer skin carries all or a major part of the load</td>
</tr>
<tr>
<td>Nick</td>
<td>Removal of paint and possibly a small amount of material</td>
</tr>
<tr>
<td>Non-Aviation Certified</td>
<td>Intended for non-aircraft application, such as Hovercraft or Wing in Ground Effect (WIG) applications. These products are certificated by an authority other than FAA. The hub and blades will be stamped with an identification that is different from, but comparable to TC and PC.</td>
</tr>
<tr>
<td>Non-Aviation Experimental</td>
<td>Intended for non-aircraft application, such as Hovercraft or Wing-In-Ground effect (WIG) applications. Products marked with an “X” at or near the end of the model number or part number are not certified by any authority and are not intended for use on certificated craft.</td>
</tr>
<tr>
<td>Onspeed</td>
<td>Condition in which the RPM selected by the pilot through the propeller control/condition lever and the actual engine (propeller) RPM are equal</td>
</tr>
<tr>
<td>Open Circuit</td>
<td>Connection of high or infinite resistance between points in a circuit which are normally lower</td>
</tr>
<tr>
<td>Outboard</td>
<td>Toward the tip of the blade</td>
</tr>
<tr>
<td>Overhaul</td>
<td>The periodic disassembly, inspection, repair, refinish, and reassembly of a propeller assembly to maintain airworthiness</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
</tr>
<tr>
<td>Overspeed</td>
<td>Condition in which the RPM of the propeller or engine exceeds predetermined maximum limits; the condition in which the engine (propeller) RPM is higher than the RPM selected by the pilot through the propeller control/condition lever</td>
</tr>
<tr>
<td>Parting Line</td>
<td>The Parting line is formed where the face and camber composite materials meet at the leading and trailing edges of the blade. They are most visible in the shank area of the blade.</td>
</tr>
<tr>
<td>Pitch</td>
<td>Same as “Blade Angle”</td>
</tr>
<tr>
<td>Pitting</td>
<td>Formation of a number of small, irregularly shaped cavities in surface material caused by corrosion or wear</td>
</tr>
<tr>
<td>Pitting (Linear)</td>
<td>The configuration of the majority of pits forming a pattern in the shape of a line</td>
</tr>
<tr>
<td>Porosity</td>
<td>An aggregation of microvoids. See “voids”.</td>
</tr>
<tr>
<td>Propeller Critical Parts</td>
<td>A part on the propeller whose primary failure can result in a hazardous propeller effect, as determined by the safety analysis required by Title 14 CFR section 35.15</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| Reference Blade Radius | Refers to the propeller reference blade radius in an assembled propeller, e.g., 30-inch radius. A measurement from the propeller hub centerline to a point on a blade, used for blade angle measurement in an assembled propeller. A yellow adhesive stripe (blade angle reference tape CM160) is usually located at the reference blade radius location.
Note: Do not confuse *reference blade radius* with *blade station*; they may not originate at the same point. |
<p>| Reversing | The capability of rotating blades to a position to generate reverse thrust to slow the aircraft or back up |
| Scratch | Same as “Nick” |
| Short | Connection of low resistance between points on a circuit between which the resistance is normally much greater |
| Shot Peening | Process where steel shot is impinged on a surface to create compressive surface stress, that provides improved strength and resistance to fatigue |
| Single Acting | Hydraulically actuated propeller that utilizes a single oil supply for pitch control |
| Split | Delamination of blade extending to the blade surface, normally found near the trailing edge or tip |
| Station Line | See "Blade Station" |
| Synchronizing | Adjusting the RPM of all the propellers of a multi-engine aircraft to the same RPM |</p>
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchrophasing</td>
<td>A form of propeller synchronization in which not only the RPM of the engines (propellers) are held constant, but also the position of the propellers in relation to each other</td>
</tr>
<tr>
<td>Ticking</td>
<td>A series of parallel marks or scratches running circumferentially around the diameter of the blade</td>
</tr>
<tr>
<td>Track</td>
<td>In an assembled propeller, a measurement of the location of the blade tip with respect to the plane of rotation, used to verify face alignment and to compare blade tip location with respect to the locations of the other blades in the assembly</td>
</tr>
<tr>
<td>Trailing Edge</td>
<td>The aft edge of an airfoil over which the air passes last</td>
</tr>
<tr>
<td>Trimline</td>
<td>Factory terminology referring to where the part was trimmed to length</td>
</tr>
<tr>
<td>Underspeed</td>
<td>The condition in which the actual engine (propeller) RPM is lower than the RPM selected by the pilot through the propeller control/condition lever</td>
</tr>
<tr>
<td>Unidirectional</td>
<td>A composite material in which the fibers are substantially oriented in the same direction</td>
</tr>
<tr>
<td>Material</td>
<td></td>
</tr>
<tr>
<td>Variable Force</td>
<td>A force that may be applied or removed during propeller operation</td>
</tr>
<tr>
<td>Vertical Balance</td>
<td>Balance between the leading and trailing edges of a two-blade propeller with the blades positioned vertically</td>
</tr>
<tr>
<td>Voids</td>
<td>Air or gas that has been trapped and cured into a laminate</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Windmilling</td>
<td>The rotation of an aircraft propeller caused by air flowing through it while the engine is not producing power</td>
</tr>
<tr>
<td>Woven Fabric</td>
<td>A material constructed by interlacing fiber to form a fabric pattern</td>
</tr>
<tr>
<td>Wrinkle (aluminum blade)</td>
<td>A wavy appearance caused by high and low material displacement</td>
</tr>
<tr>
<td>Wrinkle (composite blade)</td>
<td>Overlap or fold within the material</td>
</tr>
</tbody>
</table>
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD</td>
<td>Airworthiness Directives</td>
</tr>
<tr>
<td>AMM</td>
<td>Aircraft Maintenance Manual</td>
</tr>
<tr>
<td>AN</td>
<td>Air Force-Navy (or Army-Navy)</td>
</tr>
<tr>
<td>AOG</td>
<td>Aircraft on Ground</td>
</tr>
<tr>
<td>AR</td>
<td>As Required</td>
</tr>
<tr>
<td>ATA</td>
<td>Air Transport Association</td>
</tr>
<tr>
<td>CSU</td>
<td>Constant Speed Unit</td>
</tr>
<tr>
<td>FAA</td>
<td>Federal Aviation Administration</td>
</tr>
<tr>
<td>FH</td>
<td>Flight Hour</td>
</tr>
<tr>
<td>FM</td>
<td>Flight Manual</td>
</tr>
<tr>
<td>FMS</td>
<td>Flight Manual Supplement</td>
</tr>
<tr>
<td>Ft-Lb</td>
<td>Foot-Pound</td>
</tr>
<tr>
<td>HMI</td>
<td>Human Machine Interface</td>
</tr>
<tr>
<td>ICA</td>
<td>Instructions for Continued Airworthiness</td>
</tr>
<tr>
<td>ID</td>
<td>Inside Diameter</td>
</tr>
<tr>
<td>In-Lb</td>
<td>Inch-Pound</td>
</tr>
<tr>
<td>IPL</td>
<td>Illustrated Parts List</td>
</tr>
<tr>
<td>IPS</td>
<td>Inches Per Second</td>
</tr>
<tr>
<td>ITAR</td>
<td>International Traffic in Arms Regulations</td>
</tr>
<tr>
<td>kPa</td>
<td>Kilopascals</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Term</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>Lb(s)</td>
<td>Pound(s)</td>
</tr>
<tr>
<td>Max.</td>
<td>Maximum</td>
</tr>
<tr>
<td>Min.</td>
<td>Minimum</td>
</tr>
<tr>
<td>MIL-X-XXX</td>
<td>Military Specification</td>
</tr>
<tr>
<td>MPI</td>
<td>Major Periodic Inspection (Overhaul)</td>
</tr>
<tr>
<td>MS</td>
<td>Military Standard</td>
</tr>
<tr>
<td>MSDS</td>
<td>Material Safety Data Sheet</td>
</tr>
<tr>
<td>N</td>
<td>Newtons</td>
</tr>
<tr>
<td>N/A</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>NAS</td>
<td>National Aerospace Standards</td>
</tr>
<tr>
<td>NASM</td>
<td>National Aerospace Standards, Military</td>
</tr>
<tr>
<td>NDT</td>
<td>Nondestructive Testing</td>
</tr>
<tr>
<td>NIST</td>
<td>National Institute of Standards and Technology</td>
</tr>
<tr>
<td>N•m</td>
<td>Newton-Meters</td>
</tr>
<tr>
<td>OD</td>
<td>Outside Diameter</td>
</tr>
<tr>
<td>OPT</td>
<td>Optional</td>
</tr>
<tr>
<td>PC</td>
<td>Production Certificate</td>
</tr>
<tr>
<td>PCP</td>
<td>Propeller Critical Part</td>
</tr>
<tr>
<td>PLC</td>
<td>Programmable Logic Controller</td>
</tr>
<tr>
<td>PMB</td>
<td>Plastic Media Blasting (Cleaning)</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Term</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>POH</td>
<td>Pilot’s Operating Handbook</td>
</tr>
<tr>
<td>PSI</td>
<td>Pounds per Square Inch</td>
</tr>
<tr>
<td>RF</td>
<td>Reference</td>
</tr>
<tr>
<td>RPM</td>
<td>Revolutions per Minute</td>
</tr>
<tr>
<td>SAE</td>
<td>Society of Automotive Engineers</td>
</tr>
<tr>
<td>STC</td>
<td>Supplemental Type Certificate</td>
</tr>
<tr>
<td>TBO</td>
<td>Time Between Overhaul</td>
</tr>
<tr>
<td>TC</td>
<td>Type Certificate</td>
</tr>
<tr>
<td>TSI</td>
<td>Time Since Inspection</td>
</tr>
<tr>
<td>TSN</td>
<td>Time Since New</td>
</tr>
<tr>
<td>TSO</td>
<td>Time Since Overhaul</td>
</tr>
<tr>
<td>UID</td>
<td>Unique Identification</td>
</tr>
<tr>
<td>WIG</td>
<td>Wing-In-Ground-Effect</td>
</tr>
</tbody>
</table>
(This page is intentionally blank.)
DESCRIPTION AND OPERATION - CONTENTS

1. Description of Propellers and Systems ... 2-3
 A. System Overview ... 2-3
 B. ()HC-()()Y()()-1() with Composite Blades 2-9
 C. Constant Speed, Feathering Propellers
 ()HC-()()Y()-2 .. 2-11
 D. Counterweighted, Aerobatic ()HC-()()Y()-4() 2-15
 E. Propeller Model Designation ... 2-16

2. Propeller Blades .. 2-18
 A. Description of Aluminum Blades ... 2-18
 B. Description of Composite Blades .. 2-18
 C. Blade Model Designation ... 2-18

3. Governors ... 2-21
 A. Theory of Operation .. 2-21
 B. Governor Model Designation ... 2-24

4. Unfeathering Accumulators .. 2-25
 A. System Overview .. 2-25
 B. Mechanical Models ... 2-25
 C. Electrical Models ... 2-26

5. Aerobatic Accumulators .. 2-29
 A. System Overview .. 2-29

6. Propeller Ice Protection Systems ... 2-30
 A. System Description .. 2-30
LIST OF FIGURES

-1 Series Constant Speed, Non-Counterweighted Propeller
 ()HC-()Y()-1() with Large Cylinder......Figure 2-1.............. 2-6

-1 Series Constant Speed, Non-Counterweighted Propeller
 ()HC-()Y()-1() with Small Cylinder......Figure 2-2.............. 2-7

-1N Series Constant Speed, Non-Counterweighted Propeller..............Figure 2-3.............. 2-8

Cutaway of -2 Series Constant Speed, Feathering Propeller ()HC-()Y()-2Figure 2-4.............. 2-10

Cutaway of -4 Series Constant Speed, Counterweighted Propeller......................Figure 2-5.............. 2-14

Governor in Onspeed Condition.......................Figure 2-6.............. 2-20

Governor in Underspeed Condition....................Figure 2-7.............. 2-20

Governor in Overspeed Condition.....................Figure 2-8.............. 2-20

Feathering Governor ..Figure 2-9.............. 2-22

Synchronizer/Synchrophaser GovernorFigure 2-10............. 2-23

Governor/Accumulator SystemFigure 2-11............. 2-28

LIST OF TABLES

Propeller Model Designations............................Table 2-1 2-17

Composite Blade Model Designations.............Table 2-2 2-19

Governor Model Designations..........................Table 2-3 2-24
1. Description of Propellers and Systems

 A. System Overview

 The propellers covered in this manual are constant speed, single-acting, hydraulically actuated propellers. These propellers are designed for use with reciprocating engines.

 A constant speed propeller system is controlled by an engine speed sensing device (governor) to maintain a constant engine/propeller RPM by changing blade angle.

 The governor uses an internal pump that is driven by the engine. This pump increases engine oil pressure for supply to the propeller. Engine speed sensing hardware within the governor controls the supply of oil to the propeller, supplying or draining oil as appropriate to maintain constant engine speed.

 Propeller blade angle change is actuated by a hydraulic piston/cylinder combination mounted on the forward end of the propeller hub. The linear motion of the hydraulic piston is transmitted to each blade through a pitch change rod and a fork. A pitch change knob, located at the base of the blade, connects the blade to the fork. Each blade root is supported in the hub by a retention bearing. The retention bearing holds the blade firmly in the hub, but also allows the blade angle to change.

 Propeller forces, consisting of: mechanical spring action, counterweight centrifugal twisting moment, centrifugal and aerodynamic twisting moment of the blades, and an air charge on some propellers, in various combinations, are constantly present while the propeller is operating. The summation of these forces is opposed by a variable hydraulic force (oil pressure from the engine driven governor). Oil pressure is metered by the governor to oppose these constant forces and maintain a constant engine RPM.
Oil under pressure from the engine-driven governor is supplied to the hydraulic cylinder through the pitch change rod. Increasing or decreasing the oil volume within the hydraulic cylinder either increases blade angle to reduce engine RPM, or reduces blade angle to increase engine RPM. By changing the blade angle, the governor maintains constant engine RPM (within limits), independent of the throttle setting.

If oil pressure is lost at any time, the summation of propeller forces, which is in direct opposition to the lost variable hydraulic force, either increases or reduces blade angle, depending upon propeller model.
DESCRIPTION AND OPERATION

-1 Series Constant Speed, Non-Counterweighted Propeller (HCl-1)(Y)(1-(1) with Small Cylinder

Figure 2-2

- HI-0072

BLADE
BLADE RETENTION BEARING
HUB
SPRING
PISTON
OIL
LOW PITCH STOP
Cylinder (Oil pressure to increase blade angle and reduce RPM)
INTERNAL SPINNER SUPPORT
PITCH CHANGE ROD
GREASE FITTING
FORK
MOUNTING BOLT
SPINNER BULKHEAD
SPINNER DOME
OIL PRESSURE TO INCREASE BLADE ANGLE AND REDUCE RPM

-1 Series Constant Speed, Non-Counterweighted Propeller (HCl-1)(Y)(1-(1) with Small Cylinder

Figure 2-2

- HI-0072

BLADE
BLADE RETENTION BEARING
HUB
SPRING
PISTON
OIL
LOW PITCH STOP
Cylinder (Oil pressure to increase blade angle and reduce RPM)
INTERNAL SPINNER SUPPORT
PITCH CHANGE ROD
GREASE FITTING
FORK
MOUNTING BOLT
SPINNER BULKHEAD
SPINNER DOME
OIL PRESSURE TO INCREASE BLADE ANGLE AND REDUCE RPM
B. \(\text{HC-}(\cdot)\text{Y}\cdot-1\cdot\text{Y}\cdot\) with Composite Blades

These propeller model series (Figures 2-1 thru 2-3) are constant speed, non-counterweighted propellers. The propellers are capable of blade angles between a low positive pitch (low pitch) and high positive pitch (high pitch). These propellers are sometimes used in aerobatic applications.

Centrifugal twisting moment acting on the blades moves the blades to a low blade angle (low pitch) to increase RPM. Since the centrifugal twisting moment is only present when the propeller is rotating, a mechanical spring is installed within the propeller to assist movement of the blades to a lower pitch position as RPM decays, and to reduce the propeller pitch to the low pitch stop when the propeller is static. With the blades at low pitch, the load on the starter when starting the engine is reduced significantly.

Oil pressure opposes the spring and centrifugal twisting moment to move the blades to a high blade angle (high pitch), reducing engine RPM.

If oil pressure is lost at any time, the propeller will move to low pitch. This occurs because the spring and blade centrifugal twisting moment are no longer opposed by hydraulic oil pressure. The propeller will then reduce blade pitch to the low pitch stop.
Cutaway of -2 Series Constant Speed, Feathering Propeller (JHC(1)(Y)(2)

DESCRIPTION AND OPERATION 61-00-45 Rev. 19 Dec/19
C. Constant Speed, Feathering Propellers ()HC-()Y()-2

Refer to Figure 2-4.

The -2 Series propellers are constant speed propellers that use an air charge, spring, and counterweights (if installed) to move the blades to high pitch/feather position. Blade centrifugal twisting moment acts to move the blades to low pitch, but the air charge, spring, and counterweights overcome this force. Oil pressure against a propeller mounted hydraulic piston opposes the counterweight, spring, and air charge forces to move the blades to low blade angle (low pitch).

The action of the air charge, spring, and counterweights tends to move the blades to a higher blade angle (high pitch), reducing engine RPM. Oil pressure toward low pitch increases engine RPM.

If oil pressure is lost during operation, the propeller will feather. Feathering occurs because the air charge, spring, and blade counterweights are no longer opposed by hydraulic oil pressure. The air charge, spring and blade counterweights are then free to increase blade pitch to the feathering (high pitch) stop.

Normal in-flight feathering of these propellers is accomplished when the pilot retards the propeller pitch control past the feather detent. This allows control oil to drain from the cylinder and return to the engine sump. The engine can then be shut down.

Normal in-flight unfeathering is accomplished when the pilot positions the propeller pitch control into the normal flight (governing) range and an engine restart is attempted.

Some aircraft are equipped with a hydraulic accumulator, which stores a supply of oil under pressure. This oil supply is released to unfeather the propeller during an in-flight engine restart. Pressurized oil is directed to the propeller, resulting in blade angle decrease. The propeller begins to windmill, and engine restart is possible.
When the engine is stopped on the ground, it is undesirable to feather the propeller, as the high blade angle prevents the engine from starting. To prevent feathering during normal engine shutdown on the ground, the propeller incorporates spring energized latches. If propeller rotation is approximately 800 RPM or above, the latches are disengaged by centrifugal force acting on the latches to compress the springs. When RPM drops below 800 RPM (and blade angle is typically within 7 degrees of the low pitch stop), the springs overcome the latch weight centrifugal force and move the latches to engage the high pitch stops, preventing blade angle movement to feather during normal engine shutdown.
DESCRIPTION AND OPERATION

Cutaway of -4 Series Constant Speed, Counterweighted Propeller

Figure 2-5
D. Counterweighted, Aerobatic \(\text{HC-}()\text{Y}()-4() \)

These propeller model series (Figure 2-5) are constant speed propellers with blade mounted counterweights. The propellers are capable of blade angles between a low positive pitch (low pitch) and high positive pitch (high pitch). These propellers are generally used in aerobatic applications.

The blade centrifugal twisting moment acts to move the blades to low blade angle (low pitch), but the counterweights are large enough to neutralize this force and produce a net increase in blade angle. Oil pressure against a propeller mounted hydraulic piston opposes the counterweight forces to move the blades to low pitch.

The action of the counterweights tends to move the blades to a high blade angle (high pitch), reducing engine RPM. Oil pressure toward low pitch increases engine RPM.

If oil pressure is lost at any time, the propeller will move to high pitch to avoid overspeeding. Movement to high pitch occurs because the blade counterweights are no longer opposed by hydraulic oil pressure. The blade counterweights are then free to increase blade pitch toward the high pitch stop.
E. Propeller Model Designation

Hartzell Propeller Inc. uses a model number designation system to identify specific propeller and blade assemblies. The propeller model number and blade model number are separated by a slash (/).

Example: propeller model number / blade model number.

The propeller model number is impression stamped on the propeller hub. Refer to Table 2-1 for a description of the characters used in the propeller model number.
MINOR MODIFICATIONS
(up to 5 characters)

A - HC-C3YR-1A: COMPOSITE BLADES
B - 2 BLADES, -2 CYLINDER, LOW STOP SCREW
C - BHC-J2YF-1C, HC-E3YR-1C, HC-3YR-1C, HC-C3YR-2C: COMPOSITE BLADES
D - HC-E3YR-1E, HC-3YR-1E, PHC-G3YF-1E: COMPOSITE BLADES
E - LARGE PITCH CHANGE KNOB, FORK
F - HC-C2YR-4G, HC-C3YR-4G: COMPOSITE BLADES
G - N-SHANK COMPOSITE BLADES
H - CERTIFIED PROPELLER INSTALLED ON A NON-CERTIFIED AIRCRAFT

SPECIFIC DESIGN FEATURES

1 - CONSTANT SPEED, NO COUNTERWEIGHT, OIL PRESSURE TO HIGH PITCH, BLADE
CENTRIFUGAL TWISTING MOMENT TO LOW PITCH
2 - CONSTANT SPEED, FEATHERING, OIL PRESSURE TO LOW PITCH, AIR CHARGE AND SPRING TO HIGH PITCH/FEATHER, COUNTERWEIGHTS TO HIGH PITCH/FEATHER
4 - CONSTANT SPEED, COUNTERWEIGHTED, OIL PRESSURE TO LOW PITCH, COUNTERWEIGHT CENTRIFUGAL TWISTING MOMENT TO HIGH PITCH

BHC-J2YF-1C

RETENTION SYSTEM
INTEGRAL OR REMOVABLE PITCH CHANGE KNOB ON BLADE ROOT

NUMBER OF BLADES
2 or 3

BHC
HARTZELL CONTROLLABLE

with respect to # 1 blade, viewed clockwise facing propeller flange:

PREFIX ANGULAR INDEX CLOCKING FEATURE FLANGE
BLANK - 90 AND 270 DEGREES DOWEL PINS F
BLANK - 0 AND 180 DEGREES NON-COUNTER BORED HOLES R
B - 30 AND 210 DEGREES DOWEL PINS F
B - 120 AND 300 DEGREES NON-COUNTER BORED HOLES R
D - 60 AND 240 DEGREES NON-COUNTER BORED HOLES R
D - 60 AND 240 DEGREES DOWEL PINS F
P - 0 AND 180 DEGREES DOWEL PINS F

FLANGE ANGULAR INDEX

HARTZELL CONTROLLABLE

Propeller Model Designations
Table 2-1
2. **Propeller Blades**

A. **Description of Aluminum Blades**

 (1) Aluminum propeller blades are manufactured from one solid piece of aluminum that has been forged and heat-treated prior to manufacture.

 (2) Aluminum blades are identified by shank design, propeller diameter, tip configurations, and other blade characteristics.

 (a) Refer to the section, "Blade Model Designation" in this chapter.

B. **Description of Composite Blades**

 (1) Hartzell Propeller Inc. composite blades are constructed by layering composite material over a foam core and a metal blade shank.

 (2) A metal erosion shield is bonded to the leading edge of the blade to provide protection from impact and erosion.

 (3) Composite blades are identified by direction of rotation, shank design, propeller diameter, and other blade characteristics.

 (a) Refer to the section, "Blade Model Designation" in this chapter.

C. **Blade Model Designation**

 (1) Hartzell Propeller Inc. uses a model number designation system to identify specific propeller and blade assemblies. The propeller model number and blade model number are separated by a slash (/).

 (a) Example: *propeller model number / blade model number*

 (2) The blade model number is impression stamped on the butt end of the blade, and also identified by a label on the cylinder.

 (3) Refer to Table 2-2 for a description of the characters used in the blade model number.
SUFFIX LETTERS:
A - SLIGHTLY THINNER AND NARROWER TIP FAIRING
B - ANTI-ICING OR DE-ICE BOOT
C - N-SHANK CARBON BLADE
E - MINOR MODIFICATION
K - DE-ICE BOOT INSTALLED (FOIL ELEMENT, DIFFERENT PN FROM B ABOVE)
R - SPECIFICALLY ROUNDED TIP
BLANK - ORIGINAL DESIGN, NO CHANGES
Any alpha character not listed here denotes a minor change not affecting eligibility.

The first 2 or 3 numbers indicate initial design diameter (in inches), the last 2 numbers indicate basic model or template (there are some exceptions to this definition).

PREFIX OF UP TO 3 LETTERS:
B - RETENTION and PITCH CHANGE KNOB
C - COUNTERWEIGHT INSTALLED
F - LARGE PITCH CHANGE KNOB Y-SHANK
G - EXTENDED OUTER SHANK FOR N-SHANK
N - N-SHANK
BLANK - STANDARD BLADE, RIGHT HAND ROTATION

Composite Blade Model Designations

Table 2-2
Governor in Onspeed Condition
Figure 2-6

Governor in Underspeed Condition
Figure 2-7

Governor in Overspeed Condition
Figure 2-8
3. **Governors** (Rev. 1)

 A. Theory of Operation

 (1) A governor is an engine RPM sensing device and high pressure oil pump. In a constant speed propeller system, the governor responds to a change in engine RPM by directing oil under pressure to the propeller hydraulic cylinder or by releasing oil from the hydraulic cylinder. The change in oil volume in the hydraulic cylinder changes the blade angle and maintains the propeller system RPM to the set value. The governor is set for a specific RPM via the cockpit propeller control, which compresses or releases the governor speeder spring.

 (2) When the engine is operating at the RPM set by the pilot using the cockpit control, the governor is operating **onspeed**. Refer to Figure 2-6. In an onspeed condition, the centrifugal force acting on the flyweights is balanced by the speeder spring, and the pilot valve is neither directing oil to nor from the propeller hydraulic cylinder.

 (3) When the engine is operating below the RPM set by the pilot using the cockpit control, the governor is operating **underspeed**. Refer to Figure 2-7. In an underspeed condition, the flyweights tilt inward because there is not enough centrifugal force on the flyweights to overcome the force of the speeder spring. The pilot valve, forced down by the speeder spring, meters oil flow to decrease propeller pitch and raise engine RPM.

 (4) When the engine is operating above the RPM set by the pilot using the cockpit control, the governor is operating **overspeed**. Refer to Figure 2-8. In an overspeed condition, the centrifugal force acting on the flyweights is greater than the speeder spring force. The flyweights tilt outward, and raise the pilot valve. The pilot valve then meters oil flow to increase propeller pitch and lower engine RPM.
(5) Feathering governors allow oil to be pushed from the propeller to the engine drain to increase propeller pitch to feather.

(a) Some governors will move the propeller to feather by electrically or mechanically actuating a valve that opens to drain the oil supply between the propeller and governor to increase propeller pitch and allow the propeller to feather.

(b) Figure 2-9 illustrates another feathering propeller governor system. When it is desired to feather the propeller, the lift rod may be moved by the cockpit control to mechanically engage the valve. The lifted valve dumps oil to increase propeller pitch until the propeller feathers.
A synchronizing system can be employed in a multi-engine aircraft to keep the engines operating at the same RPM. A synchrophasing system not only keeps the RPM of the engines consistent, but also keeps the propeller blades in phase with each other. Both synchronizing and synchrophasing systems serve to reduce noise and vibration. Figure 2-10 illustrates a governor as a component of a synchronizing or synchrophasing system.

(a) Hartzell Propeller Inc. synchronizing or synchrophasing systems use one engine (the master engine) as an RPM and phase reference and adjust the RPM of the remaining engine(s) [slave engine(s)] to match it. The RPM of the master engine is monitored electronically, and this information is used to adjust the voltage applied to the electrical coil on the slave governor(s). The voltage to the coil either raises or lowers a rod which changes the force of the speeder spring. In this manner, engine RPM and phase of the propellers is synchronized or synchrophased.
B. Governor Model Designation
 (1) Hartzell Propeller Inc. uses a model number designation system to identify specific governor models.
 (2) The governor model number is stamped on the base and/or body of the governor assembly.
 (3) Refer to Table 2-3 for a description of the characters used in the governor model number.
4. **Unfeathering Accumulators** (Rev. 2)

A. **System Overview**

 (1) An unfeathering accumulator is a device that stores a volume of oil at a pressure and supplies it to the propeller when commanded to. This supplied pressure will lower blade angle which will cause the propeller to windmill and make the engine easier to start.

 (2) Hartzell Propeller Inc. manufactures an accumulator that is a cylinder with a moveable internal piston. One end of the cylinder and piston is filled with engine oil, and the other end of the cylinder and piston is filled with air or nitrogen to a designated pressure through an air valve. The accumulator is a self-contained unit and is usually installed at some remote location in the engine compartment. An oil supply hose is connected between the accumulator and the governor.

 (3) Hartzell Propeller Inc. manufactures governors that have unfeathering and feathering capability; although some governors are able to feather a propeller they are not automatically capable of unfeathering the propeller.

B. **Mechanical Models**

 (1) The governor has a fitting or threaded hole to attach with an oil supply hose that is connected to the accumulator on the other end. During operation of the engine and propeller, the governor supplies oil to the accumulator and maintains oil in the accumulator during engine operation.

 (2) The pilot commands feather of the propeller by moving the RPM control of the governor toward lower RPM to reach the feather command location. The governor disconnects the oil supply to the accumulator and seals a volume of oil under pressure in the accumulator. The governor then connects the oil supply line from the propeller piston and permits the propeller blades to move to a feather stop in the propeller.
(3) Unfeathering occurs when the governor RPM control is moved by the pilot from the feather location to a higher RPM selection for governing. The governor disconnects the propeller oil supply from the drain and reconnects it to the governor oil supply line from the governor. At that point there is no oil available from the engine oil pump to the governor; therefore, no governed oil is available from the governor for controlling the propeller blade angle and RPM. Further movement of the governor RPM control toward higher RPM will cause the governor to connect the accumulator to the oil supply line from governor to the propeller. The air or nitrogen pressure in one side of the accumulator will push a piston to force oil from the other side of the accumulator through the governor to the propeller piston to move the propeller blades from feather to a lower blade angle. The propeller will then begin to windmill and will permit the engine to start.

C. Electrical Models

(1) In an electrical model a switch activates a solenoid coil allowing oil to reverse out of a valve resulting in a lower blade angle for the purpose of starting the associated engine.

(2) The governor has a fitting or threaded hole to attach with an oil supply hose that is connected on the other side to the accumulator solenoid valve that is connected to the oil side of the accumulator. During operation of the engine and propeller, the governor supplies oil to the accumulator through the solenoid valve’s check valve until equal pressure is reached allowing the check valve to then close and maintain oil pressure at engine shutdown.
(3) When the engine has shut down or failed no oil is available from the engine oil pump to the governor; therefore, no governed oil is available from the governor for controlling the propeller blade angle and RPM. Unfeathering occurs when a switch is activated energizing the coil on the accumulator solenoid valve. The activated coil changes the valve from a one-way valve to an open passage allowing reverse flow back out of the accumulator and to the governor. The air or nitrogen pressure in one side of the accumulator will push a piston to force oil from the other side of the accumulator through the governor to the propeller piston to move the propeller blades from feather to a lower blade angle. The propeller will then begin to windmill and permit the engine to start.
Governor/Accumulator System

Figure 2-11

Governor
Check Valve
Engine Oil Supply
Drain
Accumulator

Governor Adapter

Propeller Control Oil

APS6293
5. **Aerobatic Accumulators** (Rev. 1)

CAUTION:

THE EFFECTIVENESS OF THE ACCUMULATOR SYSTEM CANNOT BE ACCURATELY SPECIFIED DUE TO VARIABLES IN THE ENGINE AND GOVERNOR INTERNAL LEAKAGE RATES, AS WELL AS THE EXTENT AND DURATION OF OIL STARVATION. THE SYSTEM CANNOT ENSURE 100 PERCENT PROTECTION FROM OVERSPEED IN ALL OPERATING CONDITIONS.

A. System Overview - Refer to Figure 2-11

1. The fundamental purpose of the accumulator is to supply oil to the governor during brief circumstances of engine oil starvation, not prolonged periods of this condition. The accumulator's oil supply helps to avoid loss of propeller control and overspeed.

2. The accumulator has a one (1) quart capacity for the oil and the volume required for an air charge. A piston or diaphragm separates the oil and air.

3. When the engine is operating, the engine oil system supplies oil to the input side of the governor gear pump. The oil supply also charges the accumulator at any time the engine oil system is developing a pressure greater than the accumulator air charge pressure. The accumulator is filled with oil until the air charge pressure of the compressed air volume is equal to the engine oil pressure.

4. In the event that the engine oil pressure drops below the accumulator air pressure, the oil in the accumulator is discharged to supply the governor gear pump. A check valve in an adapter located between the engine and governor will prevent the accumulator from discharging oil into the engine. The loss of propeller control and overspeed are avoided while an oil supply to the governor is maintained.
6. **Propeller Ice Protection Systems** (Rev. 1)

 A. System Description

 (1) For detailed descriptions of propeller ice protection systems, refer to the Anti-ice and De-ice Systems chapter in this manual.
INSTALLATION AND REMOVAL - CONTENTS

1. Tools, Consumables, and Expendables .. 3-5
 A. Tooling .. 3-5
 B. Consumables ... 3-7
 C. Expendables .. 3-7

2. Pre-Installation ... 3-8
 A. Inspection of Shipping Package.. 3-8
 B. Uncrating .. 3-8
 C. Inspection after Shipment .. 3-8
 D. Reassembly of a Propeller Disassembled for Shipment 3-8
 E. Air Charge Pressure Check (-2 Propellers) 3-9

3. Propeller Mounting Hardware and Torque Information 3-14
 A. Propeller Mounting Hardware .. 3-14
 B. Torque Information .. 3-14

4. Bulkhead Installation ... 3-16
 A. General .. 3-16
 B. Installation of a Metal Spinner Bulkhead 3-17
 C. Installation of a Composite Spinner Bulkhead 3-23
 D. Spinner Adapter to Starter Ring Gear Installation 3-28
 E. Clearance Checks .. 3-30

5. Propeller Installation ... 3-31
 A. Flange Description .. 3-31
 B. Installation of “F” Flange Propellers 3-33
 C. Installation of “R” Flange Propellers 3-38

6. Damper Installation ... 3-41

7. Spinner Installation ... 3-42
 A. One-Piece Spinner Dome Installation 3-42
 B. Two-piece Spinner Dome Installation (Procedure 1) 3-48
 C. Two-piece Spinner Dome Installation (Procedure 2) 3-51

8. Post-Installation Checks .. 3-53
9. Spinner Removal .. 3-53
 A. Removal of One-Piece Spinner .. 3-53
 B. Removal of Two-Piece Spinner ... 3-53
 C. Hub Mounted Spinner Bulkhead Removal .. 3-53
 D. Starter Ring Gear Spinner Adapter Removal .. 3-53
10. Propeller Removal .. 3-54
 A. Removal of “F” Flange Propellers ... 3-54
 B. Removal of “R” Flange Propellers ... 3-55
LIST OF FIGURES

Calculating Torque When Using a Torque Wrench Adapter..........................Figure 3-1 3-10

Diagram of Torquing Sequence for Propeller Mounting Hardware..................Figure 3-2 3-13

Hub Clamping Bolt Location.................................Figure 3-3 3-15

Metal Spinner Bulkhead Hardware Stack-up Figure 3-4 3-18

Washer-to-Bolt Thread Coverage...............................Figure 3-5 3-19

Lock Nut-to-Bolt Thread ExposureFigure 3-6 3-20

Composite Spinner Hub Clamping Bolt Stack-up ...Figure 3-7 3-24

Spinner/Spinner Adapter Mounting..........................Figure 3-8 3-27

Spinner Installation Clearance..............................Figure 3-9 3-29

F Flange Propeller Mounting ..Figure 3-10 3-32

Safety Wire Installation..Figure 3-11 3-35

R Flange Propeller Mounting.................................Figure 3-12 3-37

Damper Installation...Figure 3-13 3-41

Optional Tape on the Forward BulkheadFigure 3-14 3-43

Two-Piece Spinner Mounting (Procedure 1).....Figure 3-15 3-47

Two-Piece Spinner Mounting (Procedure 2).....Figure 3-16 3-49

Spinner Dome-to-Bulkhead Mounting Hole Alignment ...Figure 3-17 3-49
LIST OF TABLES

- Torque Table ... Table 3-1 3-11
- Metal Spinner Bulkhead
 - Mounting Hardware Table 3-2 3-17
- Composite Spinner Bulkhead
 - Mounting Hardware Table 3-3 3-23
- Propeller/Engine Flange O-rings
 and Hardware .. Table 3-4 3-33
- Spinner Dome and Spinner Cap
 - Mounting Hardware Table 3-5 3-45
1. **Tools, Consumables, and Expendables**

 The following tools, consumables, and expendables will be required for propeller removal or installation:

 NOTE: Compact propellers with composite blades are manufactured with one two basic hub mounting flange designs. The flange types are F or R. The flange type used on a particular propeller installation is indicated in the propeller model number stamped on the hub. For example, BHC-J2YE-1C indicates an F flange. Refer to Aluminum Hub Propeller Model Identification in the Description and Operation chapter of this manual for a description of each flange.

 A. **Tooling**

 CAUTION: USE CARE WHEN USING TOOLS. INCORRECT USE OF TOOLS COULD CAUSE DAMAGE TO THE HUB THAT CANNOT BE REPAIRED AND WOULD REQUIRE THAT THE HUB BE REPLACED.

 (1) Tools for Bulkhead Mounting

 CAUTION 1: DO NOT USE AN OPEN END WRENCH TO TORQUE THE HUB CLAMPING NUTS ON A SMOOTH FORGED HUB.

 CAUTION 2: WHEN USING THE TORQUE WRENCH ADAPTER TE457, MAKE SURE THAT IT IS CORRECTLY ENGAGED ON THE NUT BEFORE APPLYING TORQUE.

 (a) For three-bladed propellers that use a smooth forged hub:

 1. The three-bladed smooth forged hub has less area around the heads of the hub clamping bolts than the previous design of the compact hub.

 2. Torque wrench adapter Hartzell Propeller Inc. Part Number 101939 TE457 is required when torquing the hub clamping bolts for a three-bladed smooth forged hub.
(b) For a propeller other than a three-bladed propeller that uses a smooth forged hub:

1. Use torque wrench adapter Hartzell Propeller Inc. Part Number 101939 TE457 or other applicable torque adapter when torquing the hub clamping bolts.

NOTE: Using a wrench other than Hartzell Propeller Inc. Part Number 101939 TE457 increases the risk of the wrench causing damage to the hub in the areas around the hub clamping bolts.

(2) Tools for Propeller Removal or Installation:

D and F Flange Propellers
- Safety wire pliers (Alternate: Safety cable tool)
- Torque wrench (1/2 inch drive)
- Torque wrench adapters:
 - Hartzell Propeller Inc. Part Number BST-2860 TE150
- 3/4 inch open end wrench

L Flange Propellers
- Safety wire pliers (Alternate: Safety cable tool)
- Torque wrench (1/2 inch drive)
- Torque wrench adapters:
 - Hartzell Propeller Inc. Part Number BST-2860 TE150 or 5/8 inch crowfoot wrench

NOTE: Using a wrench other than Hartzell Propeller Inc. Part Number BST-2860 TE150 increases the risk of the wrench causing damage to the hub in the areas around the mounting fasteners.
- 5/8 inch open end wrench

N Flange Propellers
- Safety wire pliers (Alternate: Safety cable tool)
- Torque wrench (1/2 inch drive)
- Torque wrench adapter:
 - 7/8 inch crowfoot wrench
- 7/8 inch open end wrench
K and R Flange Propellers
• Safety wire pliers (Alternate: Safety cable tool)
• Torque wrench (1/2 inch drive)
• Torque wrench adapters:
 - Hartzell Propeller Inc. Part Number BST-2860 (TE150)
 or 3/4 inch crowfoot wrench

NOTE: Using a wrench other than Hartzell Propeller Inc. Part Number BST-2860 TE150 increases the risk of the wrench causing damage to the hub in the areas around the mounting fasteners
• 3/4 inch open end wrench

B. Consumables
• Quick Dry Stoddard Solvent or MEK

C. Expendables
• 0.032 inch (0.81 mm) stainless steel aircraft safety wire
 (Alternate: 0.032 inch [0.81 mm] aircraft safety cable, and associated hardware
• O-ring (see Table 3-4)
2. **Pre-Installation**

 A. Inspection of Shipping Package

 (1) Examine the exterior of the shipping container, especially the box ends around each blade, for signs of shipping damage.

 (a) If the box is damaged, contact the freight company for a freight claim.

 (b) A hole, or tear, or crushed appearance at the end of the box (blade tips) may indicate that the propeller was dropped during shipment, possibly damaging the blades.

 1 If the propeller is damaged, contact Hartzell Propeller Inc. Refer to the section, “Hartzell Propeller Inc. Contact Information” in the Introduction chapter of this manual.

 B. Uncrating

 (1) Put the propeller on a firm support.

 (2) Remove the banding and any external wood bracing from the cardboard shipping container.

 (3) Remove the cardboard from the hub and blades.

 CAUTION: DO NOT STAND THE PROPELLER ON A BLADE TIP.

 (4) Put the propeller on a padded surface that supports the entire length of the propeller.

 (5) Remove the plastic dust cover cup from the propeller mounting flange, if installed.

 C. Inspection after Shipment

 (1) After removing the propeller from the shipping container, examine the propeller components for shipping damage.

 D. Reassembly of a Propeller Disassembled for Shipment

 (1) If a propeller was received disassembled for shipment, it must be reassembled by trained personnel in accordance with the applicable propeller maintenance manual.

 (2) For installation of ice protection systems manufactured by Hartzell, refer to Hartzell Propeller Inc. Ice Protection System Manual 180 (30-61-80).
E. Air Charge Pressure Check (-2 Propellers)

(1) Perform an air charge pressure check before propeller installation. Refer to the section, “Air Charge” in the Maintenance Practices chapter of this manual.

(a) If the air pressure loss is less than 10 percent of the specified pressure, reservice the propeller.

(b) If the air pressure loss is greater than 10 percent of the specified pressure, repair the propeller. This repair must be performed at a certified propeller repair station with the appropriate rating.
Calculating Torque Value When Using a Torque Wrench Adapter

Figure 3-1

\[(\text{actual torque required}) \times (\text{torque wrench length}) \div (\text{torque wrench length}) + (\text{length of adapter}) = \text{Torque wrench reading to achieve required actual torque}\]

EXAMPLE:

\[
\frac{100 \text{ Ft-Lb} (136 \text{ N•m}) \times 1.00 \text{ ft (304.8 mm)}}{1.00 \text{ ft (304.8 mm)} + 0.25 \text{ ft (76.2 mm)}} = \frac{80 \text{ Ft-Lb} (108 \text{ N•m})}{(76.2 \text{ mm})} < \text{reading on torque wrench with 3-inch (76.2 mm) adapter for actual torque of 100 Ft-Lb (136 N•m)}
\]

The correction shown is for an adapter that is aligned with the centerline of the torque wrench. If the adapter is angled 90 degrees relative to the torque wrench centerline, the torque wrench reading and actual torque applied will be equal.
Installation Torques

CAUTION 1:	FOR A PROPELLER THAT DOES NOT USE A LUBRICATED (WET) TORQUE, THE MOUNTING HARDWARE MUST BE CLEAN AND DRY TO PREVENT EXCESSIVE PRELOAD OF THE MOUNTING FLANGE.
CAUTION 2:	TORQUE VALUES WITH “WET” NOTED AFTER THEM ARE BASED ON LUBRICATED THREADS WITH APPROVED ANTI-SEIZE COMPOUND MIL-PRF-83483().
CAUTION 3:	REFER TO FIGURE 3-1 FOR TORQUE READING WHEN USING A TORQUE WRENCH ADAPTER.

<table>
<thead>
<tr>
<th>Item</th>
<th>Torque Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>For ()HC-()()Y()-()() ONLY Hub clamping bolts/spinner mounting nuts</td>
<td>20-22 ft-lbs (28-29 N•m)</td>
</tr>
<tr>
<td>For ()HC-()3Y1()-1() ONLY Hub clamping bolts/spinner mounting nuts</td>
<td>24-26 ft-lbs (33-35 N•m)</td>
</tr>
<tr>
<td>F flange propeller mounting nuts</td>
<td>70-80 ft-lbs (95-108 N•m)</td>
</tr>
<tr>
<td>For all R flange propeller mounting studs</td>
<td>60-70 ft-lbs (82-94 N•m)</td>
</tr>
<tr>
<td>Low pitch stop jam nut -1 Application (See Figure 6-17) P/N A-2043-1, P/N B-3359, P/N B-3599</td>
<td>14-16 ft-lbs (19-21 N•m)</td>
</tr>
<tr>
<td>Low pitch stop jam nut -4 Application (See Figure 6-17) P/N A-2043-1, P/N B-3359, P/N B-3599, P/N B-3807</td>
<td>27-33 ft-lbs (37-44 N•m)</td>
</tr>
<tr>
<td>Low pitch stop jam nut for -2 applications that use a one-piece spinner dome (See Figure 6-19)</td>
<td>25-30 ft-lbs (34-40 N•m)</td>
</tr>
<tr>
<td>Installation Torques</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Low pitch stop jam nut/Spinner locknut “A” and “B” for</td>
<td>25-30 ft-lbs (34-40 N•m)</td>
</tr>
<tr>
<td>two-piece spinner dome (See Figure 6-18, Figure 3-10,</td>
<td></td>
</tr>
<tr>
<td>and Figure 3-11)</td>
<td></td>
</tr>
<tr>
<td>Governor Max. RPM Stop locking nut</td>
<td>30-36 in-lbs (3.4-4.0 N•m)</td>
</tr>
</tbody>
</table>
F Flange

Step 1 - Torque all mounting nuts to 40 Ft-Lbs (54 N•m) in the sequence shown.

Step 2 - Torque all mounting nuts in accordance with Table 3-1 and Figure 3-1 in the sequence shown.

R Flange

Step 1 - Torque all mounting studs to 40 Ft-Lbs (54 N•m) in the sequence shown.

Step 2 - Torque all mounting studs in accordance with Table 3-1 and Figure 3-1 in the sequence shown.
3. Propeller Mounting Hardware and Torque Information (Rev. 1)

A. Propeller Mounting Hardware

 (1) Refer to Table 3-1 for part numbers of the propeller mounting hardware and O-rings.

B. Torque Information

 (1) The structural integrity of joints in the propeller that are held together with threaded fasteners is dependent upon proper torque application.

 (a) Vibration can cause an incorrectly tightened fastener to fail in a matter of minutes.

 (b) Correct tension in a fastener depends on a variety of known load factors and can influence fastener service life.

 (c) Correct tension is achieved by application of measured torque.

 (2) Use accurate wrenches and professional procedures to make sure of correct tensioning.

 (3) Refer to Table 3-2 for the torque values to use when installing a Hartzell propeller.

 (4) When an adapter is used with a torque wrench, use the equation in Figure 3-1 to determine the correct torque value.

 (5) Refer to Figure 3-2 for the proper torquing sequence of the propeller mounting bolts/nuts.
Hub Clamping Bolt Location

Figure 3-3
4. **Bulkhead Installation**

 A. **General**

 (1) The spinner bulkhead must be mounted to the hub before the propeller can be installed on the aircraft. Follow the applicable instructions in this section.
B. Installation of a Metal Spinner Bulkhead

(1) Remove the nuts from the hub clamping bolts that are located on either side of the blade shank. Refer to Figure 3-3.
 (a) Do not remove the hub clamping bolts.
 (b) The remaining nuts/bolts should not be removed.

(2) If spinner mounting kit hardware with bolts was supplied separately, remove the existing bolts on either side of the blade shank and replace them with the bolts from the kit.

(3) Refer to Table 3-2 for part numbers of the mounting hardware used with metal spinner bulkheads.

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flat Washer</td>
<td>B-3834-0663</td>
</tr>
<tr>
<td>Flat Washer (additional)</td>
<td>B-3834-0663</td>
</tr>
<tr>
<td>Self-locking Spinner Mounting Nut</td>
<td>B-3599</td>
</tr>
<tr>
<td>Spacer</td>
<td>A-2246-()</td>
</tr>
</tbody>
</table>

Metal Spinner Bulkhead Mounting Hardware
Table 3-2
Metal Spinner Bulkhead Hardware Stack-up

NOTE: Components with dashed lines indicate alternate placement of spinner mounting kit components.

Figure 3-4

NOTE: Components with dashed lines indicate alternate placement of spinner mounting kit components.
Washer-to-Bolt Thread Coverage
Figure 3-5
Lock Nut-to-Bolt Thread Exposure
Figure 3-6

ACCEPTABLE

Hub Clamping Bolt
Self-locking Spinner Mounting Nut
Flat Washers
Spinner Bulkhead

UNACCEPTABLE

Hub Clamping Bolt
Self-locking Spinner Mounting Nut
Flat Washers
Spinner Bulkhead
CAUTION 1: ON SOME INSTALLATIONS, IT MAY BE NECESSARY TO INSTALL SPACERS AND ONE OR MORE FLAT WASHER(S) BELOW THE HEAD OF THE HUB CLAMPING BOLT TO PREVENT INTERFERENCE WITH AIRCRAFT COWLING. REFER TO FIGURE 3-4.

CAUTION 2: THE STACK-UP SEQUENCE FOR EACH HUB CLAMPING BOLT MUST BE THE SAME. VARIANCES BETWEEN STACK-UPS CAN CAUSE CRACKING OF THE SPINNER BULKHEAD. EXCEPTIONS MAY BE REQUIRED IF PROPELLER APPLICATIONS HAVE DE-ICE OR ANTI-ICE APPLICATIONS. REFER TO HARTZELL PROPELLER INC. MANUAL 180 (30-61-80) FOR INSTALLATION INSTRUCTIONS.

(4) Install additional flat washer(s), as needed. Refer to Figure 3-4.

(5) Install the spacer(s) on the hub clamping bolts. Refer to Figure 3-4.

CAUTION: DO NOT LET THE SPINNER BULKHEAD TOUCH THE HUB. AN ADDITIONAL FLAT WASHER OR SPACER MUST BE BETWEEN THE SPINNER BULKHEAD AND THE HUB.

(6) Install the spinner bulkhead over the installed hardware on the hub clamping bolts. Refer to Figure 3-4.
CAUTION: A MINIMUM OF ONE THREAD MUST BE COVERED BY FLAT WASHER(S) OR SPACER(S) TO MAKE SURE THE SELF-LOCKING SPINNER MOUNTING NUT WILL NOT BOTTOM OUT ON THE NON-THREADED AREA OF THE HUB CLAMPING BOLT. REFER TO FIGURE 3-5 FOR ILLUSTRATIONS OF ACCEPTABLE/UNACCEPTABLE THREAD COVERAGE.

(7) Install one flat washer. Refer to Figure 3-4.
 (a) Install additional flat washer(s), as needed to accomplish the one thread minimum coverage. Refer to Figure 3-5.

CAUTION: A MINIMUM OF ONE THREAD OF THE HUB CLAMPING BOLT MUST STICK OUT FROM THE SELF-LOCKING SPINNER MOUNTING NUT. REFER TO FIGURE 3-6 FOR ILLUSTRATIONS OF ACCEPTABLE/UNACCEPTABLE THREAD EXPOSURE.

(8) Install a new self-locking spinner mounting nut on each hub clamping bolt. Refer to Figure 3-4.

(9) Torque each self-locking spinner mounting nut in accordance with the section, “Propeller Mounting Hardware and Torque Information” in this chapter.
C. Installation of a Composite Spinner Bulkhead

(1) Remove the nuts from the hub clamping bolts that are located on either side of the blade shank. Refer to Figure 3-3.
 (a) Do not remove the hub clamping bolts.
 (b) The remaining nuts/bolts should not be removed.

(2) If spinner mounting kit hardware was supplied separately, remove the bolts on either side of the blade shank and replace them with the bolts from the kit.

(3) Refer to Table 3-3 for part numbers of the mounting hardware used with composite spinner bulkheads.

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bushing Spacer</td>
<td>B-7424-()</td>
</tr>
<tr>
<td>Wave Washer</td>
<td>B-7425</td>
</tr>
<tr>
<td>Thin Flat Washer</td>
<td>B-3834-0832</td>
</tr>
<tr>
<td>Flat Washer</td>
<td>B-7423</td>
</tr>
<tr>
<td>Flat Washer (additional)</td>
<td>B-3834-0663</td>
</tr>
<tr>
<td>Self-locking Spinner Mounting Nut</td>
<td>B-3599</td>
</tr>
</tbody>
</table>

Composite Spinner Bulkhead Mounting Hardware
Table 3-3
Composite Spinner Hub Clamping Bolt Stack-up
Figure 3-7

CAUTION:

THE STACK-UP BETWEEN THE ADDITIONAL FLAT WASHER(S) - "A" AND ADDITIONAL FLAT WASHER(S) - "B" MUST BE IN THE EXACT ORDER STARTING FROM THE BUSHING SPACER:
BUSHING SPACER, WAVE WASHER, THIN FLAT WASHER, SPINNER BULKHEAD, AND A FLAT WASHER.

Self-locking Spinner Mounting Nut

Additional Flat Washer(s) - “A”

Thin Flat Washer

Bushing Spacer

Wave Washer

Additional Flat Washer(s) - “B”

Additional Flat Washer(s): used to move the threaded end of the bolt away from the cowling, if necessary.

Spacer: used to move the threaded end of the bolt away from the cowling, if necessary.
CAUTION 1: ON SOME INSTALLATIONS, IT MAY BE NECESSARY TO INSTALL SPACERS AND ONE OR MORE FLAT WASHER(S) BELOW THE HEAD OF THE HUB CLAMPING BOLT TO PREVENT INTERFERENCE WITH AIRCRAFT COWLING. REFER TO FIGURE 3-7.

CAUTION 2: THE STACK-UP SEQUENCE FOR EACH HUB CLAMPING BOLT MUST BE THE SAME. VARIANCES BETWEEN STACK-UPS CAN CAUSE CRACKING OF THE SPINNER BULKHEAD. EXCEPTIONS MAY BE REQUIRED IF PROPELLER APPLICATIONS HAVE DE-ICE OR ANTI-ICE APPLICATIONS. REFER TO HARTZELL PROPELLER INC. MANUAL 180 (30-61-80) FOR INSTALLATION INSTRUCTIONS.

(4) Install additional flat washer(s), as needed. Refer to Figure 3-7.

NOTE: Additional flat washer(s) must be installed before installing the bushing spacer, wave washer, and thin flat washer.

(5) Install a bushing spacer, wave washer, and thin flat washer on each of the hub clamping bolts. Refer to Figure 3-7.

CAUTION: DO NOT LET THE SPINNER BULKHEAD TOUCH THE HUB.

(6) Install the spinner bulkhead over the installed hardware on the hub clamping bolts.
CAUTION: A MINIMUM OF ONE THREAD MUST BE COVERED BY FLAT WASHER(S) OR SPACER(S) TO MAKE SURE THE NUT WILL NOT BOTTOM OUT ON THE NON-THREADED AREA OF THE HUB CLAMPING BOLT. REFER TO FIGURE 3-5 FOR ILLUSTRATIONS OF ACCEPTABLE/UNACCEPTABLE THREAD COVERAGE.

(7) Install a flat washer on the hub clamping bolts. Refer to Figure 3-7.
 (a) Install additional flat washer(s), as needed to accomplish the one thread minimum coverage. Refer to Figure 3-7.

CAUTION: A MINIMUM OF ONE THREAD OF THE HUB CLAMPING BOLT MUST STICK OUT FROM THE SELF-LOCKING SPINNER MOUNTING NUT. REFER TO FIGURE 3-6 FOR ILLUSTRATIONS OF ACCEPTABLE/UNACCEPTABLE THREAD EXPOSURE.

(8) Install a new self-locking spinner mounting nut on each hub clamping bolts. Refer to Figure 3-7.
(9) Torque each spinner mounting nut in accordance with the section, “Propeller Mounting Hardware and Torque Information” in this chapter.
D. Spinner Adapter to Starter Ring Gear Installation (if applicable)

CAUTION: INSTALL SPINNER ADAPTER BOLTS SO THAT THE BOLT HEADS ARE AT THE REAR OF THE STARTER RING GEAR AS INDICATED IN FIGURE 3-8. BOLTS INSTALLED INCORRECTLY MAY DAMAGE ENGINE COMPONENTS.

(1) Installation

(a) Install the spinner adapter ring to the starter ring gear using the hardware supplied by the airframe manufacturer. Torque the bolts as specified by the airframe manufacturer. Refer to Figure 3-8.
Spinner Installation Clearance

Figure 3-9

- Spinner Dome
- Spinner Dome Blade Cutout Opening
- Forward Bulkhead
- Inward Facing Flange
- Flared Radius of the Cylinder
- Spinner Bulkhead
- Filler Plate
- Clearance
- Propeller Blade
- Engine Cowl
- Spinner Dome Blade

TPI-36-008e, TPI-136-011a
E. Clearance Checks
 Refer to Figure 3-9.

 (1) The spinner bulkhead must be spaced between the hub and the engine cowl to permit the spinner dome blade cut-out openings to not come in contact with the propeller blades at all blade angle locations.
 (a) The spinner bulkhead and any attached filler plate must also not come in contact with the propeller blades at all blade angle locations.

 (2) The edge of the spinner bulkhead and the spinner dome must not touch the engine cowl and not cause interference during propeller/engine operation.

 (3) The hub clamping bolts must not come in contact with any non-rotating part of the aircraft.

 (4) The spinner dome, spinner bulkhead, and the hub clamping bolts must not come in contact with any ice protection system hardware.

 (5) Spinner domes with a bonded forward bulkhead only; make sure the flange on the forward bulkhead does not bottom out on the flared radius of the cylinder.
WARNING: FAILURE TO FOLLOW THESE INSTALLATION INSTRUCTIONS MAY LEAD TO PROPELLER DAMAGE, ENGINE DAMAGE, OR PROPELLER FAILURE, WHICH MAY RESULT IN DEATH, SERIOUS BODILY INJURY, AND/OR SUBSTANTIAL PROPERTY DAMAGE. UNUSUAL OR ABNORMAL VIBRATION DEMANDS IMMEDIATE INSPECTION FOR IMPROPER PROPELLER INSTALLATION. PROPELLER SEPARATION MAY OR MAY NOT BE PROCEEDED BY VIBRATION.

5. Propeller Installation
 A. Flange Description

 CAUTION: SOME STEEL HUB PROPELLERS INCORPORATE A PHENOLIC SPACER BETWEEN THE PROPELLER AND ENGINE-MOUNTING FLANGE. WHEN INSTALLING AN ALUMINUM HUB PROPELLER, THIS SPACER MUST BE DISCARDED. THE ALUMINUM HUB PROPELLER MOUNTING O-RING IS LOCATED ON THE INSIDE DIAMETER OF THE PROPELLER HUB. THERE SHOULD NOT BE AN O-RING ON THE ENGINE FLANGE WHEN INSTALLING AN ALUMINUM HUB PROPELLER.

 (1) Hartzell compact propellers with composite blades are manufactured with two basic hub mounting flange designs.

 (2) The flange type designators are F or R. The flange type used on a particular propeller installation is indicated in the propeller model stamped on the hub. For example, HC-C3YR-1A indicates an R flange.

 (3) Refer to Aluminum Hub Propeller Model Identification in the Description and Operation chapter of this manual for description of each flange type. Sample flanges are also shown in Figure 3-10 and Figure 3-12.
NOTE: If a torque wrench adapter is used, use the calculation in Figure 3-1 to determine correct torque wrench setting.
B. Installation of “F” Flange Propellers

(1) General

(a) An “F” flange propeller has six 1/2 inch diameter studs configured in a four inch circle.

(b) Two dowel pins are also supplied to transfer torque and index the propeller with respect to the engine crankshaft. Refer to Figure 3-10.

(c) The dowel pin locations used on a particular propeller installation are indicated in the propeller model stamped on the hub. Refer to Aluminum Hub Propeller Model Identification in the Description and Operation chapter of this manual.

(2) Perform the applicable steps in the section, “Bulkhead Installation” in this chapter.

WARNING: CLEANING AGENTS ARE FLAMMABLE AND TOXIC TO THE SKIN, EYES, AND RESPIRATORY TRACT. SKIN AND EYE PROTECTION ARE REQUIRED. AVOID PROLONGED CONTACT. USE IN WELL VENTILATED AREA.

(3) Clean the engine flange and propeller flange with Quick Dry Stoddard Solvent or MEK.

(4) Refer to Figure 3-10. Lubricate the mounting flange O-ring with engine oil.

(a) Install the O-ring in the O-ring groove in the hub bore. Refer to Table 3-4 for the applicable O-ring and mounting hardware.

NOTE: When the propeller is received from the factory, the O-ring has been installed.

<table>
<thead>
<tr>
<th>Flange</th>
<th>O-ring</th>
<th>Stud/Bolt</th>
<th>Nut</th>
<th>Washer/Spacer</th>
<th>Spring Pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>“F”</td>
<td>C-3317-228</td>
<td>n/a</td>
<td>A-2044</td>
<td>A-1381*</td>
<td>n/a</td>
</tr>
<tr>
<td>“R”</td>
<td>C-3317-228</td>
<td>A-2067</td>
<td>A-2069</td>
<td>A-1381</td>
<td>B-3842-0625</td>
</tr>
</tbody>
</table>

* Do not install the A-1381 washer on installations that use Goodrich Corp. part number 4E1881 or 4E2058 split mounting plate.
WARNING: MAKE SURE THAT ANY EQUIPMENT USED TO INSTALL THE PROPELLER IS RATED UP TO 800 LBS. (363 KG) TO SUPPORT THE WEIGHT OF THE PROPELLER ASSEMBLY DURING INSTALLATION. ONE PERSON MUST NEVER ATTEMPT TO INSTALL AN UNSUPPORTED PROPELLER BY HIMSELF, REGARDLESS OF THE SIZE OR WEIGHT OF THE PROPELLER. MANUALLY LIFTING THE PROPELLER ONTO THE ENGINE CAN RESULT IN PERSONAL INJURY.

CAUTION 1: A PROPELLER MUST BE CORRECTLY SUPPORTED DURING INSTALLATION ON THE ENGINE. AVOID ANY ROCKING OR SHIFTING OF THE PROPELLER WHEN IT IS PARTIALLY ENGAGED WITH THE ENGINE. ROCKING OF THE PROPELLER DURING PROPELLER INSTALLATION CAN DAMAGE THE PROPELLER HUB MOUNTING FACE, CAUSING ACTUATION OIL LEAKAGE OR DAMAGE THAT MAY SCRAP THE HUB. HUB DAMAGE CAN ALSO INTRODUCE METAL INTO THE PROPELLER OIL ACTUATION SYSTEM, WHICH COULD POSSIBLY DAMAGE THE ENGINE.

CAUTION 2: WHEN INSTALLING THE PROPELLER ON THE AIRCRAFT, DO NOT DAMAGE THE ICE PROTECTION SYSTEM COMPONENTS, IF APPLICABLE.

(5) With a suitable support, such as a crane hoist or similar equipment, carefully move the propeller assembly to the aircraft engine mounting flange in preparation for installation.
Safety Wire Installation

Figure 3-11

Safety wire may be installed here
(6) Install the propeller on the engine flange. Make sure to align the dowel pins in the propeller flange with the corresponding holes in the engine mounting flange.

(a) The propeller may be installed on the engine flange in a given position, or 180 degrees from that position. Check the engine and airframe manuals to determine if either manual specifies a propeller mounting position.

CAUTION 1: MOUNTING HARDWARE MUST BE CLEAN AND DRY TO PREVENT EXCESSIVE PRELOAD OF THE MOUNTING FLANGE.

CAUTION 2: TIGHTEN NUTS EVENLY TO AVOID HUB DAMAGE.

(7) Install the 1/2 inch propeller mounting nuts (dry) with spacers. Refer to Table 3-4.

(8) Torque the 1/2 inch propeller mounting nuts (dry) in accordance with Table 3-1, Figure 3-1, and Figure 3-2.

(9) If required by the aircraft maintenance manual, safety all mounting studs with 0.032 inch (0.81 mm) minimum diameter stainless steel wire or equivalent aircraft safety cable and associated hardware (two studs for each safety). Refer to Figure 3-11.

(10) If the propeller is equipped with an ice protection system that uses components supplied by Hartzell Propeller Inc., applicable instructions and technical information for the components supplied by Hartzell Propeller Inc. can be found in the following publication available on the Hartzell Propeller Inc. website at www.hartzellprop.com:

(a) Hartzell Propeller Inc. Manual 180 (30-61-80) - Propeller Ice Protection System Manual

(11) Propeller ice protection system components not supplied by Hartzell Propeller Inc. are controlled by the applicable TC or STC holder’s Instructions for Continued Airworthiness (ICA).

(12) Install the propeller spinner dome in accordance with the section “Spinner Installation” in this chapter.
R Flange Propeller Mounting
Figure 3-12

*NOTE: If a torque wrench adapter is used, use the calculation in Figure 3-1 to determine correct torque wrench setting.
C. Installation of “R” Flange Propellers

(1) General

(a) An “R” flange is an SAE No. 2 flange that has six 1/2 inch diameter studs configured in a 4.75 inch circle.

(b) Five drive bushings transfer torque and index the propeller with respect to the engine crankshaft. The bushings are located on the engine flange and fit into counterbored holes on the propeller flange. Refer to Figure 3-12.

(c) The bushing locations used on a particular propeller installation are indicated in the propeller model stamped on the hub. Refer to Aluminum Hub Propeller Model Identification in the Description and Operation chapter of this manual.

(2) Perform the applicable steps in the section, “Bulkhead Installation” in this chapter.

WARNING: CLEANING AGENTS ARE FLAMMABLE AND TOXIC TO THE SKIN, EYES AND RESPIRATORY TRACT. SKIN AND EYE PROTECTION IS REQUIRED. AVOID PROLONGED CONTACT. USE IN WELL VENTILATED AREA.

(3) Clean the engine flange and propeller flange with Quick Dry Stoddard Solvent or MEK.

(4) Refer to Figure 3-12. Install the O-ring in the O-ring groove in the rear of the hub. Refer to Table 3-4 for the applicable O-ring and mounting hardware.

NOTE: When the propeller is received from the factory, the O-ring has been installed.
WARNING: MAKE SURE THAT ANY EQUIPMENT USED TO INSTALL THE PROPELLER IS RATED UP TO 800 LBS. (363 KG) TO SUPPORT THE WEIGHT OF THE PROPELLER ASSEMBLY DURING INSTALLATION. ONE PERSON MUST NEVER ATTEMPT TO INSTALL AN UNSUPPORTED PROPELLER BY HIMSELF, REGARDLESS OF THE SIZE OR WEIGHT OF THE PROPELLER. MANUALLY LIFTING THE PROPELLER ONTO THE ENGINE CAN RESULT IN PERSONAL INJURY.

CAUTION 1: A PROPELLER MUST BE CORRECTLY SUPPORTED DURING INSTALLATION ON THE ENGINE. AVOID ANY ROCKING OR SHIFTING OF THE PROPELLER WHEN IT IS PARTIALLY ENGAGED WITH THE ENGINE. ROCKING OF THE PROPELLER DURING PROPELLER INSTALLATION CAN DAMAGE THE PROPELLER HUB MOUNTING FACE, CAUSING ACTUATION OIL LEAKAGE OR DAMAGE THAT MAY SCRAP THE HUB. HUB DAMAGE CAN ALSO INTRODUCE METAL INTO THE PROPELLER OIL ACTUATION SYSTEM, WHICH COULD POSSIBLY DAMAGE THE ENGINE.

CAUTION 2: WHEN INSTALLING THE PROPELLER ON THE AIRCRAFT, DO NOT DAMAGE THE ICE PROTECTION SYSTEM COMPONENTS, IF APPLICABLE.

(5) With a suitable support, such as a crane hoist or similar equipment, carefully move the propeller assembly to the aircraft engine mounting flange in preparation for installation.

(6) Install the propeller on the engine flange. Align the engine flange bushings with the corresponding holes in the propeller flange.
CAUTION 1: MOUNTING HARDWARE MUST BE CLEAN AND DRY TO PREVENT EXCESSIVE PRELOAD OF THE MOUNTING FLANGE.

CAUTION 2: TIGHTEN NUTS EVENLY TO AVOID HUB DAMAGE.

(7) Torque the 1/2 inch diameter propeller mounting studs (dry) in accordance with Table 3-1, Figure 3-1, and Figure 3-2.

(8) If required by the aircraft maintenance manual, safety all mounting studs with 0.032 inch (0.81 mm) minimum diameter stainless steel wire or equivalent aircraft safety cable and associated hardware (two studs for each safety). Refer to Figure 3-12.

(9) If the propeller is equipped with an ice protection system that uses components supplied by Hartzell Propeller Inc., applicable instructions and technical information for the components supplied by Hartzell Propeller Inc. can be found in the following publication available on the Hartzell Propeller Inc. website at www.hartzellprop.com:

(a) Hartzell Propeller Inc. Manual 180 (30-61-80) - Propeller Ice Protection System Manual

(10) Propeller ice protection system components not supplied by Hartzell Propeller Inc. are controlled by the applicable TC or STC holder’s Instructions for Continued Airworthiness (ICA).

(11) Install the propeller spinner dome in accordance with the section “Spinner Installation” in this chapter.
6. Damper Installation

CAUTION: USE WITH A-2476-16 SPINNER MOUNTING KIT ONLY.

A. Installation of C-1576 Damper (Hartzell Propeller Inc. Kit A-1583)

NOTE: Use the A-2476-16 spinner mounting kit when installing the C-1576 damper assembly. Refer to Figure 3-13.

(1) Remove four B-3834-0663 washers from the A-2476-16 spinner mounting kit.
(2) Install A-2246-4 spacer onto the hub clamping bolts.
(3) Install the spinner bulkhead over the installed spacers on the hub clamping bolts.
(4) Install A-2246-5 spacer onto the hub clamping bolts.
(5) Install the damper assembly and fasten with B-2043-1 nut.
(6) Install the propeller spinner dome and cap in accordance with the section “Spinner Installation” in this chapter.

Damper Installation
Figure 3-13
7. **Spinner Installation**

CAUTION: TO PREVENT DAMAGE TO THE BLADE AND BLADE PAINT, WRAP THE BLADE SHANKS IN SEVERAL LAYERS OF MASKING OR DUCT TAPE BEFORE INSTALLING THE SPINNER DOME. REMOVE THE TAPE AFTER THE SPINNER IS INSTALLED.

A. One-Piece Spinner Dome Installation

(1) The following instructions relate to Hartzell Propeller Inc. spinners only. In some cases, the airframe manufacturer produced the spinner assembly. If so, refer to the airframe manufacturer’s manual for spinner installation instructions.

(2) Examine the low pitch stop hardware configuration.
 (a) If the visual examination shows that the hardware configuration is one hex nut safety wired to a set screw, no further action is required.
 (b) If the visual examination shows that the hardware configuration is not one hex nut safety wired to a set screw, modify the propeller assembly to the hardware configuration of one hex nut safety wired to a set screw in accordance with the section “Modification of the Low Pitch Stop Hardware” in the Maintenance Practices chapter of this manual.

(3) The spinner dome has an internal support (refer to Figure 2-1) that encircles the propeller cylinder. The cylinder may need to be wrapped with one or more layers of UHMW tape (Hartzell Propeller Inc. Part Number B-6654-100).

CAUTION: THE SPINNER DOME INTERNAL SUPPORT MUST FIT SNUGLY ON THE CYLINDER. AN IMPROPERLY SUPPORTED DOME COULD CAUSE CYLINDER DAMAGE OR A CRACK IN THE DOME OR BULKHEAD.

(4) Install the spinner dome.
(5) Make sure there is a snug fit where the internal support touches the cylinder.
UHMW Tape
(Hartzell Propeller Inc. P/N B-6654-100)

Optional Tape on the Forward Bulkhead
Figure 3-14

Tape wrapped over the trailing edge of the forward bulkhead
(6) If the support does not fit snugly on the cylinder, apply a layer of UHMW tape (Hartzell Propeller Inc. P/N B-6654-100) on the outboard flange of the forward bulkhead to prevent contact between the forward bulkhead and the spinner dome.

WARNING: ADHESIVES AND SOLVENTS ARE FLAMMABLE AND TOXIC TO THE SKIN, EYES, AND RESPIRATORY TRACT. SKIN AND EYE PROTECTION ARE REQUIRED. AVOID PROLONGED CONTACT AND BREATHING OF VAPORS. USE SOLVENT RESISTANT GLOVES TO MINIMIZE SKIN CONTACT AND WEAR SAFETY GLASSES FOR EYE PROTECTION. USE IN A WELL VENTILATED AREA AWAY FROM SPARKS AND FLAME. READ AND OBSERVE ALL WARNING LABELS.

(a) Using acetone, denatured alcohol, or MEK, clean the area where the tape will be applied.

(b) Cut eight pieces of tape that are approximately three inches (76 mm) long.

(c) Apply the pieces of tape in equally spaced locations on the forward bulkhead as shown in Figure 3-14.

(d) Tape may be wrapped over trailing edge of the forward bulkhead as necessary.

(7) Repeat sections 5.A.(6)(a) through 5.A.(6)(d) until the spinner support fits snugly on the cylinder.

(8) If anti-ice travel tubes are installed;

CAUTION: THE TRAVEL TUBES MUST NOT TOUCH THE SPINNER DOME BLADE CUTOUT.

(a) Make sure there is clearance between the travel tubes and the spinner dome blade cutouts.

(b) Make adjustments to the position of the travel tubes in accordance to Hartzell Propeller Inc. Manual 180 (30-61-80).
<table>
<thead>
<tr>
<th>Dome or Cap</th>
<th>Washer</th>
<th>Screw</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metal Spinner Dome</td>
<td>A-1020 Fiber</td>
<td>B-3845-8, 10-32, Truss Head</td>
</tr>
<tr>
<td>Metal Spinner Cap</td>
<td>n/a</td>
<td>B-3866-50, 8-32, 100° Head, Cres</td>
</tr>
<tr>
<td>Composite Spinner Dome</td>
<td>B-3860-10L Dimpled, 100°, Cres.</td>
<td>B-3867-272, 10-32, 100° Head, Cres</td>
</tr>
</tbody>
</table>

Spinner Dome and Spinner Cap Mounting Hardware

Table 3-5
CAUTION: TO AVOID DAMAGING THE AIRCRAFT COWLING, THE SCREWS MUST NOT EXTEND MORE THAN THREE THREADS PAST THE BULKHEAD NUTPLATES.

(9) Using the supplied screws and washers, attach the spinner dome to the spinner bulkhead. Refer to Table 3-5.

(a) Install a screw in each of the one or two holes centered between two blade cutouts.
(b) Tighten the screw(s) until snug.
(c) Install a screw in each of the one or two holes centered between two blade cutouts on the opposite side of the spinner dome.
(d) Tighten the screw(s) until snug.
(e) Install the screws in the holes centered between two blade cutouts for the remaining areas.
(f) Tighten the screw(s) until snug.
(g) Install the remaining screws in the remaining holes.
(h) Tighten the screws until snug.
Two-Piece Spinner Mounting (Procedure 1)

Figure 3-15

- Spinner Dome
- Lock Nut “B”
- Lock Nut “A” (with step facing away from cylinder)
- Cylinder
B. Two-piece Spinner Dome Installation (Procedure 1)

(1) General

(a) A spinner dome that is installed using Procedure 1 may be identified by the lock nut “A” at the top of the cylinder. The lock nut “A” has a “step” facing away from the cylinder. Refer to Figure 3-15.

1. Lock nut “A” may have drilled holes for safety wire, but safety wire is not required in this location.

(b) The following instructions relate to Hartzell Propeller Inc. spinners only. In some cases, the airframe manufacturer produced the spinner assembly. Refer to the airframe manufacturer’s manual for spinner installation instructions.

(2) Procedure - Refer to Figure 3-15.

(a) Install the spinner dome.

(b) Push the spinner dome toward the bulkhead to align the spinner mounting holes with those of the bulkhead.

(c) If anti-ice travel tubes are installed;

\textbf{CAUTION:} THE TRAVEL TUBES MUST NOT TOUCH THE SPINNER DOME BLADE CUTOUT.

1. Make sure there is clearance between the travel tubes and the spinner dome blade cutouts.

Two-Piece Spinner Mounting (Procedure 2)

Figure 3-16

Spinner Dome-to-Bulkhead Mounting Hole Alignment

Figure 3-17
(d) Using the supplied screws and washers, attach the spinner dome to the spinner bulkhead. Refer to Table 3-5.

1. Install a screw in each of the one or two holes centered between two blade cutouts.
2. Tighten the screw(s) until snug.
3. Install a screw in each of the one or two holes centered between two blade cutouts on the opposite side of the spinner dome.
4. Tighten the screw(s) until snug.
5. Install the screws in the holes centered between two blade cutouts for the remaining areas.
6. Tighten the screw(s) until snug.
7. Install the remaining screws in the remaining holes.
8. Tighten the screws until snug.

(e) Install the lock nut “B” on the low pitch stop. Refer to Table 3-1 and Figure 3-1 for lock nut torque.

(f) Safety wire the lock nut “B” to each of the two screws on the flat face of the spinner dome surrounding the lock nut “B”.

CAUTION: MAKE SURE THAT THE SCREWS DO NOT EXTEND MORE THAN THREE THREADS PAST THE BULKHEAD NUTPLATES. IF THE SCREWS EXTEND MORE THAN THREE THREADS, THIS CAN CAUSE DAMAGE TO THE AIRCRAFT COWLING.

(g) Using flat head screws, attach the spinner dome cap to the spinner dome. Refer to Table 3-5.
C. Two-Piece Spinner Dome Installation (Procedure 2)

(1) General

(a) A spinner dome that is installed using Procedure 2 may be identified by the lock nut “A” at the top of the cylinder. The lock nut “A” is flat-faced. Refer to Figure 3-16.

1 Lock nut “A” may have drilled holes for safety wire, but safety wire is not required in this location.

(b) The following instructions relate to Hartzell Propeller Inc. spinners only. In some cases, the airframe manufacturer produced the spinner assembly. If so, refer to the airframe manufacturer’s manual for spinner installation instructions.

(2) Procedure - Refer to Figure 3-16.

(a) Put spacers on the low pitch stop lock nut “A”. Up to eight spacers may be used.

(b) Install spacers, then examine the spinner fit. The spinner is correctly spaced when the holes in the spinner dome are misaligned 1/4-1/3 of their diameter toward the front of the aircraft, or rear in a pusher installation. Refer to Figure 3-17. Add or remove spacers to achieve this alignment.

(c) Install the spinner dome.

(d) Push the spinner dome aft to align the spinner mounting holes with those of the bulkhead or adapter ring.

(e) If anti-ice travel tubes are installed;

CAUTION: THE TRAVEL TUBES MUST NOT TOUCH THE SPINNER DOME BLADE CUTOUT.

1 Make sure there is clearance between the travel tubes and the spinner dome blade cutouts.

2 Make adjustments to the position of the travel tubes in accordance to Hartzell Propeller Inc. Manual 180 (30-61-80).
CAUTION: MAKE SURE THAT THE SCREWS DO NOT EXTEND MORE THAN THREE THREADS PAST THE BULKHEAD NUTPLATES. IF THE SCREWS EXTEND MORE THAN THREE THREADS, THIS CAN CAUSE DAMAGE TO THE AIRCRAFT COWLING.

(f) Using the supplied screws and washers, attach the spinner dome to the spinner bulkhead. Refer to Table 3-5.

1. Install a screw in each of the one or two holes centered between two blade cutouts on one side of the dome.
2. Tighten the screw(s) until snug.
3. Install a screw in each of the one or two holes centered between two blade cutouts on the opposite side of the spinner dome.
4. Tighten the screw(s) until snug.
5. Install the screws in the holes centered between two blade cutouts for the remaining areas.
6. Tighten the screw(s) until snug.
7. Install the remaining screws in the remaining holes.
8. Tighten the screws until snug.

(g) Install the lock nut “B” (that has a shoulder and safety wire holes) on the low pitch stop. Refer to Table 3-1 and Figure 3-1 for lock nut torque.

(h) Safety wire the lock nut “B” to each of the two screws on the flat face of the spinner dome surrounding the lock nut “B”.

(i) Using flat head screws, attach the spinner dome cap to the spinner dome. Refer to Table 3-5.
8. **Post-Installation Checks**
 A. Perform a Static RPM Check as outlined in the Testing and Troubleshooting chapter of this manual.

9. **Spinner Removal**

 CAUTION: WRAP THE BLADE SHANKS IN SEVERAL LAYERS OF MASKING OR DUCT TAPE BEFORE REMOVING THE SPINNER DOME, TO PREVENT DAMAGING THE BLADE AND BLADE SURFACE.

 A. Removal of One-Piece Spinner
 1. Remove the screws and washers that attach the spinner to the spinner bulkhead or adapter ring.
 2. Remove the spinner dome.

 B. Removal of Two-Piece Spinner
 1. Remove the flat head screws that attach the spinner dome cap to the spinner dome.
 2. Cut and remove the lock nut safety wire.
 3. Remove the lock nut.
 4. Remove the screws and washers that attach the spinner dome to the spinner bulkhead.
 5. Remove the spinner dome.

 C. Hub Mounted Spinner Bulkhead Removal
 1. Remove the propeller. Refer to Propeller Removal in this chapter.
 2. Remove the flat washers and self-locking nuts that attach the spinner bulkhead to the propeller hub.
 3. Reinstall the flat washers and self-locking nuts that were removed during the removal of the spinner bulkhead.

 D. Starter Ring Gear Spinner Adapter Removal
 1. Remove the propeller. Refer to Propeller Removal in this chapter.
 2. Remove the spinner adapter by removing the hardware that attaches the spinner adapter to the starter ring gear.
10. Propeller Removal

A. Removal of “F” Flange Propellers

 (1) Remove the spinner dome in accordance with the section, “Spinner Removal” in this chapter.

 (2) If the propeller is equipped with an ice protection system that uses components supplied by Hartzell Propeller Inc., applicable instructions and technical information for the components supplied by Hartzell Propeller Inc. can be found in the following publication available on the Hartzell Propeller Inc. website at www.hartzellprop.com:

 (a) Hartzell Propeller Inc. Manual 180 (30-61-80) - Propeller Ice Protection System Manual

 (3) Propeller ice protection system components not supplied by Hartzell Propeller Inc. are controlled by the applicable TC or STC holder’s Instructions for Continued Airworthiness (ICA).

 (4) If installed, cut and remove the safety wire or safety cable on the propeller mounting studs.

 WARNING: MAKE SURE THE SLING IS RATED UP TO 800 POUNDS (363 KG) TO SUPPORT THE WEIGHT OF THE PROPELLER ASSEMBLY DURING REMOVAL.

 (5) Support the propeller assembly with a sling.

 (a) Supporting the propeller with the sling may be delayed until all but two mounting nuts and spacers have been removed.

 (6) If the propeller will be reinstalled and it has been dynamically balanced, make an identifying mark (with a felt-tipped pen only) on the propeller hub and a matching mark on the engine flange to make sure of correct positioning of the propeller during re-installation.

 NOTE: This will prevent dynamic imbalance.
CAUTION: DISCARD THE PROPELLER MOUNTING NUTS AND SPACERS IF THEY ARE DAMAGED OR CORRODED, OR WHEN THE PROPELLER IS REMOVED FOR OVERHAUL.

(7) Remove the six 1/2 inch diameter mounting nuts.
 (a) If the propeller is removed between overhaul intervals, mounting studs, nuts, and spacers may be reused if they are not damaged or corroded.

CAUTION: REMOVE THE PROPELLER FROM THE MOUNTING FLANGE WITH CARE TO PREVENT DAMAGING THE PROPELLER MOUNTING STUDS.

(8) Using the support sling, remove the propeller from the mounting flange.

(9) Put the propeller on a cart for transport.

B. Removal of “R” Flange Propellers

(1) Remove the spinner dome in accordance with the section “Spinner Removal” in this chapter.

(2) If the propeller is equipped with an ice protection system that uses components supplied by Hartzell Propeller Inc., applicable instructions and technical information for the components supplied by Hartzell Propeller Inc. can be found in the following publication available on the Hartzell Propeller Inc. website at www.hartzellprop.com:
 (a) Hartzell Propeller Inc. Manual 180 (30-61-80) - Propeller Ice Protection System Manual

(3) Propeller ice protection system components not supplied by Hartzell Propeller Inc. are controlled by the applicable TC or STC holder’s Instructions for Continued Airworthiness (ICA).

(4) If installed, cut and remove the safety wire or safety cable on the propeller mounting stud nuts.
WARNING: MAKE SURE THE SLING IS RATED UP TO 800 POUNDS TO SUPPORT THE WEIGHT OF THE PROPELLER ASSEMBLY DURING REMOVAL.

(5) Support the propeller assembly with a sling.

(6) If the propeller will be reinstalled and it has been dynamically balanced, make an identifying mark (with a felt-tipped pen only) on the propeller hub and a matching mark on the engine flange to make sure of correct positioning of the propeller during re-installation.

NOTE: This will prevent dynamic imbalance.

CAUTION: DISCARD THE PROPELLER MOUNTING NUTS AND SPACERS IF THEY ARE DAMAGED OR CORRODED, OR WHEN THE PROPELLER IS REMOVED FOR OVERHAUL.

(7) Unscrew the six 1/2 inch diameter mounting studs from the engine bushings.

(a) If the propeller is removed between overhaul intervals, mounting studs, nuts, and spacers may be reused if they are not damaged or corroded.

CAUTION: REMOVE THE PROPELLER FROM THE MOUNTING FLANGE WITH CARE TO PREVENT DAMAGING THE PROPELLER MOUNTING STUDS.

(8) Using the support sling, remove the propeller from the mounting flange.

(9) Put the propeller on a cart for transport.
TESTING AND TROUBLESHOOTING - CONTENTS

1. Operational Checks .. 4-3
 A. Operational Checks .. 4-3

2. Propeller Ice Protection Systems .. 4-3
 A. Operational Checks and Troubleshooting .. 4-3

3. Troubleshooting .. 4-4
 A. Hunting and Surging ... 4-4
 B. Engine Speed Varies with Flight Attitude (or Airspeed) .. 4-5
 C. Loss of Propeller Control (-1 propellers only) .. 4-6
 D. Loss of Propeller Control (-2 and -4 propellers) .. 4-7
 E. Failure to Feather .. 4-8
 F. Failure to Unfeather .. 4-8
 G. Start Locks Fail to Latch (-2 propellers only) ... 4-9
 H. Vibration .. 4-10
 I. Propeller Overspeed/Avoidance ... 4-12
 J. Overspeed Avoidance (Operational) for Propeller Models ()HC-() (2,3)Y() ()-1() .. 4-12
 K. Overspeed Avoidance (Mechanical Modification) for Propeller Models ()HC-() (2,3)Y() ()-1() 4-13
 L. Propeller Underspeed ... 4-13
1. **Operational Checks** (Rev. 1)

 A. Operational Checks

 (1) Refer to the Inspection and Check chapter of this manual for operational checks including pre-flight, initial run-up, and post-run checks.

2. **Propeller Ice Protection Systems** (Rev. 1)

 WARNING: CONSULT THE PILOT OPERATING HANDBOOK (INCLUDING ALL SUPPLEMENTS) REGARDING FLIGHT INTO CONDITIONS OF KNOWN ICING. THE AIRCRAFT MAY NOT BE CERTIFICATED FOR FLIGHT INTO KNOWN ICING CONDITIONS, EVEN THOUGH AN ICE PROTECTION SYSTEM IS INSTALLED.

 A. Operational Checks and Troubleshooting

 (1) Refer to the Anti-ice and De-ice Systems chapter of this manual for operational checks and troubleshooting information for Hartzell Propeller Inc. ice protection systems.
3. Troubleshooting

CAUTION: INSTRUCTIONS AND PROCEDURES IN THIS SECTION MAY INVOLVE PROPELLER CRITICAL PARTS. REFER TO THE INTRODUCTION CHAPTER OF THIS MANUAL FOR INFORMATION ABOUT PROPELLER CRITICAL PARTS. REFER TO THE ILLUSTRATED PARTS LIST CHAPTER OF THE APPLICABLE OVERHAUL MANUAL(S) FOR THE IDENTIFICATION OF SPECIFIC PROPELLER CRITICAL PARTS.

A. Hunting and Surging (Rev. 1)

1. **General**

 (a) Hunting is characterized by a cyclic variation in engine speed above and below desired speed. Surging is characterized by a large increase/decrease in engine speed, followed by a return to set speed after one or two occurrences.

 (b) If the propeller is hunting, a certified propeller repair station with the appropriate rating should check:

 1. Governor
 2. Fuel control
 3. Synchrophaser or synchronizer

2. **If the propeller is surging:**

 (a) Perform the “Initial Run-Up” in accordance with the Inspection and Check chapter of this manual to release trapped air from the propeller.

 1. If surging reoccurs, it is most likely due to a faulty governor.

 a. Have the governor tested by a certified propeller repair station with the appropriate rating.
(b) Hunting and/or surging may also be caused by friction or binding within the governor control, or internal propeller corrosion, which causes the propeller to react slower to governor commands.

To isolate these faults, the propeller must be tested on a test bench at a certified propeller repair station with the appropriate rating.

B. Engine Speed Varies with Flight Attitude (or Airspeed)

(1) Small variances in engine speed are normal and are no cause for concern.

(2) Increase in engine speed while descending or increasing airspeed:

(a) Non-feathering (-1) propeller:
 1. Governor is not increasing oil volume in the propeller.
 2. Engine transfer bearing leaking excessively.
 3. Excessive friction in the blade bearings or pitch changing mechanism.
 4. Accumulator air pressure is too low.

(b) Feathering (-2) or Aerobatic (-4) propeller:
 1. Governor is not reducing oil volume in the propeller.
 2. Air charge (-2 propeller only) is too low. Refer to the Maintenance Practices chapter for air recharge procedure.
 3. Excessive friction in the blade bearings or pitch changing mechanism.

(3) Decrease in engine speed while increasing airspeed:

(a) Non-feathering (-1) propeller:
 1. Governor pilot valve is stuck and is excessively increasing oil volume.

(b) Feathering (-2) or Aerobatic (-4) propeller:
 1. Governor pilot valve is stuck and is excessively decreasing oil volume.
 2. Feathering command engaged on propeller pitch control (-2 propeller only).
(4) Increase in engine speed while decreasing airspeed:
 (a) Non-feathering (-1) propeller:
 1. Governor pilot valve is stuck and is excessively decreasing oil volume.
 (b) Feathering (-2) or Aerobatic (-4) propeller:
 1. Governor pilot valve is stuck and is excessively increasing oil volume.

(5) Decrease in engine speed while decreasing airspeed:
 (a) Non-feathering (-1) propeller:
 1. Governor is not reducing oil volume in propeller.
 2. Excessive friction in blade bearings or pitch changing mechanism.
 (b) Feathering (-2) or Aerobatic (-4) propeller:
 1. Governor is not increasing oil volume in the propeller.
 2. Air charge (-2 propeller only) is too high. Refer to the Maintenance Practices chapter for air recharge procedure.
 3. Engine transfer bearing leaking excessively.
 4. Excessive friction in the blade bearings or pitch changing mechanism.

C. Loss of Propeller Control (-1 propellers only)
(1) Propeller goes to uncommanded low pitch (high RPM)
 (a) Loss of propeller oil pressure - Check:
 1. Governor pressure relief valve for proper operation.
 2. Governor drive for damage.
 3. Adequate engine oil supply.
 4. Engine transfer bearing leaking excessively.
 5. Accumulator air pressure is too low.
 (b) Internal oil leakage to opposite side of piston and into hub.

(2) Propeller goes to uncommanded high pitch (low RPM)
 Governor pilot valve sticking.
(3) RPM increases with power and airspeed, propeller RPM control has little or no effect.
 (a) Excessive friction in the blade bearings or pitch changing mechanism.
 (b) Internal oil leakage to opposite side of piston and into hub.

D. Loss of Propeller Control (-2 and -4 propellers)
(1) Propeller goes to uncommanded high pitch (or feather)
 (a) Loss of propeller oil pressure - check:
 1 Governor pressure relief valve for proper operation.
 2 Governor drive for damage.
 3 Adequate engine oil supply.
 4 Engine transfer bearing leaking excessively.
 (b) Start locks not engaging (-2 propellers only)
 (c) Air charge pressure too high (-2 propellers only). Refer to the Maintenance Practices chapter for air recharge procedure.

(2) Propeller goes to uncommanded low pitch (high RPM)
 (a) Governor pilot valve sticking.

(3) RPM increases with power and airspeed, propeller RPM control has little or no effect.
 (a) Excessive friction in blade bearings or pitch changing mechanism.

 (b) Air charge lost or low. (-2 propellers only). Refer to the Air Charge section in the Maintenance Practices chapter of this manual.

 (c) Broken feathering spring (-2 propellers only).

(4) RPM Control Sluggish
 (a) Air charge lost or low (-2 propellers only). Refer to the Air Charge section in the Maintenance Practices chapter of this manual.
E. Failure to Feather (Rev. 1)
 (1) Air charge lost or low. If applicable, refer to the section, "Air Charge" in the Maintenance Practices chapter of this manual.
 (2) Broken feathering spring (if applicable).
 (3) Check for proper function and rigging of propeller/governor control linkage.
 (4) Check the governor function.
 (5) The propeller must be inspected for misadjustment or internal corrosion (usually in blade bearings or pitch change mechanism) that results in excessive friction.
 (a) This inspection must be performed by a certified propeller repair station with the appropriate rating.

F. Failure to Unfeather (Rev. 1)
 (1) Check for proper function and rigging of propeller control linkage.
 (2) Check the governor function.
 (3) Check for excessive oil leakage at engine transfer bearing.
 (4) The propeller must be inspected for misadjustment or internal corrosion (usually in blade bearings or pitch change mechanism) that results in excessive friction.
 (a) This inspection must be performed by a certified propeller repair station with the appropriate rating.
G. Start Locks Fail to Latch

1. Propeller was feathered before shutdown.
2. Shutdown occurred at high RPM with prop control off the low pitch stop.
3. Air charge is too high. Refer to the Maintenance Practices chapter for this procedure.
4. Excessive engine transfer bearing oil leakage.
5. Excessive governor pump leakage.
6. Broken start locks.

Problems G(1) and G(2) above may be solved by restarting the engine, placing the propeller control in the proper shutdown position, and then shutting down the engine.

Problems G(4), G(5), and G(6) should be referred to a certified propeller repair station with the appropriate rating.
H. Vibration (Rev. 1)

CAUTION 1:
ANY VIBRATION THAT OCCUR SUDENLY, OR IS ACCOMPANIED BY UNEXPLAINED GREASE LEAKAGE SHOULD BE INVESTIGATED IMMEDIATELY BEFORE FURTHER FLIGHT.

CAUTION 2:
VIBRATION PROBLEMS BECAUSE OF PROPELLER SYSTEM IMBALANCE ARE NORMALLY FELT THROUGHOUT THE RPM RANGE, WITH THE INTENSITY OF VIBRATION INCREASING WITH RPM. VIBRATION PROBLEMS THAT OCCUR IN A NARROW RPM RANGE ARE A SYMPTOM OF RESONANCE, THAT IS POTENTIALLY HARMFUL TO THE PROPELLER. AVOID OPERATION UNTIL THE PROPELLER CAN BE CHECKED AT A CERTIFIED PROPELLER REPAIR STATION WITH THE APPROPRIATE RATING.

(1) Check:
(a) Control surfaces, cowl flaps, exhaust system, landing gear doors, etc. for excessive play that may be causing vibration that is unrelated to the propeller
(b) Isolation of engine controls and lines
(c) Engine mount wear
(d) Uneven or over lubrication of propeller
(e) Proper engine/propeller flange mating
(f) Blade track.
 1 Refer to the section, "Blade Track" in the Inspection and Check chapter of this manual.
(g) Blade angles:
 1 Blade angles must be within specified tolerance between blades.
 a Refer to a certified propeller repair station with the appropriate rating to check/adjust blade angles.
(h) Spinner for cracks, improper installation, or "wobble" during operation

(i) Static balance

(j) Propeller installation

1. Remove and reinstall the propeller 180 degrees from the original installation position.

 a. "R" flange propellers installed on an engine that has an "R" flange cannot be reinstalled 180 degrees from the original installation position.

(k) Hub damage or cracking

(l) Grease or oil leakage

(m) Blade deformation

(2) Dynamic Balance

(a) Dynamic balancing is recommended after installing or performing maintenance on a propeller. While this is normally an optional task, it may be required by the engine or airframe manufacturer to make certain the propeller/engine combination is balanced properly before operation.

1. Refer to the engine or airframe manuals, and the Maintenance Practices chapter of this manual.
I. Propeller Overspeed/Avoidance

(1) Check:

(a) Tachometer error.
(b) Low pitch stop adjustment.
(c) Governor Maximum RPM set too high.
(d) Loss of oil pressure (-1 propellers only)
 1. Oil starvation
 2. Governor failure
 3. Accumulator air pressure low
(e) Loss or lowered air charge (-2 propellers only—results in momentary overspeed). Refer to the Air Charge section in the Maintenance Practices chapter of this manual.
(f) Governor pilot valve jammed to supply high pressure only. (-2 and -4 propellers only)
(g) Oil leaking past piston causing the hydraulic lock of piston in the cylinder. (-1 propellers only)

J. Overspeed Avoidance (Operational) for Propeller Models

()HC-()2,3Y()-1()

(1) Hartzell ()HC-()2,3Y()-1() propellers are designed to reduce blade angle in the event of a loss of oil pressure. This reduction in blade angle allows all available engine power to be utilized in the event of an oil system failure. This reduction in blade angle also can allow the engine to overspeed, especially at higher airspeeds. During most aerobatic maneuvers, overspeeds are prevented by an accumulator system that supplies back-up oil pressure for a limited time.

(2) If the aircraft is capable of performing maneuvers that result in an extended loss of oil pressure to the propeller governor, the back-up supply of the accumulator can be exhausted. To prevent engine overspeeds during extended maneuvers that result in a loss of oil pressure, reduce the power and/or check to ensure that engine oil pressure has been restored before re-applying power.

(3) Additional information regarding the momentary loss of oil pressure during aerobatic flight can be found in the Christen 801 Series Inverted Oil System Product Manual.
K. Overspeed Avoidance (Mechanical Modification) for Propeller Models ()HC-()(2,3)Y()-1()

(1) If maneuvers are regularly performed that could result in engine overspeeds, an alternate means of overspeed protection is available by modifying the propeller such that it defaults to high pitch blade angle in the event of a loss of oil pressure. This modification uses blade counterweights, an oil-to-decrease pitch governor, and eliminates the use of the accumulator.

(2) If this modification is used, it should be understood that while supplying protection from overspeeds, this propeller system will not permit the use of all available engine power in the event of an oil system failure. The modification is available for certain applications. Refer to Hartzell Service Bulletin HC-SB-61-240 for details about this modification.

(3) If there is an engine overspeed, refer to the Inspection and Check chapter of this manual for corrective action following a propeller overspeed. Additional inspections may be required by the engine and/airframe manufacturer.

L. Propeller Underspeed

(1) Check:

(a) Tachometer error.
(b) Excessive transfer bearing oil leakage.
(c) Governor oil pressure low.
(d) Governor oil passage clogged.
(e) Oil leaking past piston causing hydraulic lock in the cylinder (-2 and -4 propellers only).
1. Pre-Flight Checks
 A. Important Information
 B. Propeller Blades
 C. Spinner Assembly and Blade Retention Components
 D. Hardware
 E. Grease/Oil Leakage
 F. Initial Run-Up
 G. Additional Information

2. Operational Checks
 A. Initial Run-Up
 B. Static RPM Check
 C. Post-Run Check
 D. Propeller Ice Protection System

3. Required Periodic Inspections and Maintenance
 A. Periodic Inspections
 B. Periodic Maintenance
 C. Periodic Coin-Tap Inspections for Composite Blades
 D. Airworthiness Limitations
 E. Overhaul Periods

4. Inspection Procedures
 A. Blade Damage
 B. Grease/Oil Leakage
 C. Vibration
 D. Blade Track
 E. Loose Blades
 F. Corrosion
 G. Spinner Damage
 H. Accumulator
 I. Propeller Ice Protection System

5. Special Inspections
 A. Overspeed/Overtorque
INSPECTION AND CHECK - CONTENTS, CONTINUED

5. Special Inspections, continued
 B. Lightning Strike ... 5-27
 C. Foreign Object Strike/Ground Strike 5-29
 D. Fire/Heat Damage.. 5-31
 E. Sudden Stoppage .. 5-31
 F. Engine Oil Contamination ... 5-31

6. Long Term Storage ... 5-32
 A. Important Information... 5-32
 B. Composite Blades .. 5-32

LIST OF FIGURES

Checking Blade Track..Figure 5-1........... 5-21
Blade Movement...Figure 5-2............. 5-23
Reciprocating Engine Overspeed LimitsFigure 5-3............. 5-25
1. **Pre-Flight Checks** (Rev. 1)

CAUTION: INSTRUCTIONS AND PROCEDURES IN THIS SECTION MAY INVOLVE PROPELLER CRITICAL PARTS. REFER TO THE INTRODUCTION CHAPTER OF THIS MANUAL FOR INFORMATION ABOUT PROPELLER CRITICAL PARTS. REFER TO THE ILLUSTRATED PARTS LIST CHAPTER OF THE APPLICABLE OVERHAUL MANUAL(S) FOR THE IDENTIFICATION OF SPECIFIC PROPELLER CRITICAL PARTS.

A. **Important Information**

 (1) Follow propeller preflight inspection procedures as specified in the Pilot Operating Handbook (POH) in addition to the inspections specified in this section.

 (2) Defects or damage found during the pre-flight inspection must be evaluated in accordance with the applicable section in the Testing and Troubleshooting chapter and/or the Maintenance Practices chapter of this manual.

B. **Propeller Blades**

 (1) Visually examine the entire blade (leading edge, trailing edge, face, and camber sides) for nicks, gouges, erosion, cracks, and debonds (composite blades only).

 (a) Normal erosion (sand-blasted appearance) on the leading edge of the blade is permitted and does not require removal before further flight.

 (2) Visually examine the blades for lightning strike indications in accordance with the section, "Lightning Strike" in this chapter.

 (3) Check the blades for radial play or movement of the blade tip (in-and-out, fore-and-aft, and end play).

 (a) Refer to the section, “Loose Blades” in this chapter for blade play limits.
(4) If an ice protection system is installed, visually examine the anti-icing or de-ice boot for damage.
 (a) Refer to the Anti-ice and De-ice Systems chapter in this manual for operational checks and troubleshooting information for Hartzell Propeller Inc. ice protection systems.

(5) Composite Blades Only
 (a) Composite blades that do not have an anti-icing or de-ice boot installed may require erosion tape on the leading edge of the blade.

1 Refer to the section, “Erosion Tape Installation” in the Maintenance Practices chapter of this manual for requirements and instructions.

C. Spinner Assembly and Blade Retention Components
 (1) Inspect the spinner and the visible blade retention components for damage and/or cracks.

 (a) Repair or replace components as required before further flight.

D. Hardware
 (1) Check for loose or missing hardware.

 (a) Retighten or reinstall as necessary.
WARNING: ABNORMAL GREASE/OIL LEAKAGE CAN BE AN INDICATION OF A FAILING PROPELLER BLADE OR BLADE RETENTION COMPONENT. AN IN-FLIGHT BLADE SEPARATION CAN RESULT IN A CATASTROPHIC AIRCRAFT ACCIDENT.

E. Grease/Oil Leakage

(1) Examine the face and camber-sides of the blades for evidence of grease/oil leakage.

(2) Using an appropriate light source, examine the propeller through the blade cut-outs in the spinner for signs of grease/oil leakage.

(a) Spinner removal is not required for this inspection.

(b) If grease/oil leakage is found, contact Hartzell Propeller Inc. Product Support.

F. Initial Run-Up

(1) Perform the Initial Run-Up procedure in accordance with the section, “Operational Checks” in this chapter.

G. Additional Information

(1) Refer to the airframe manufacturer’s manual for additional pre-flight checks.

(2) Refer to the section, “Inspection Procedures” in this chapter for additional inspection/repair information.
2. Operational Checks (Rev. 1)

CAUTION: INSTRUCTIONS AND PROCEDURES IN THIS SECTION MAY INVOLVE PROPELLER CRITICAL PARTS. REFER TO THE INTRODUCTION CHAPTER OF THIS MANUAL FOR INFORMATION ABOUT PROPELLER CRITICAL PARTS. REFER TO THE ILLUSTRATED PARTS LIST CHAPTER OF THE APPLICABLE OVERHAUL MANUAL(S) FOR THE IDENTIFICATION OF SPECIFIC PROPELLER CRITICAL PARTS.

A. Initial Run-Up

(1) Following propeller installation and before flight, perform the Initial Run-Up procedure in accordance with the instructions in this section.

WARNING: REFER TO THE AIRCRAFT MAINTENANCE MANUAL FOR ADDITIONAL PROCEDURES THAT MAY BE REQUIRED AFTER PROPELLER INSTALLATION.

(2) Perform engine start and warm-up in accordance with the Pilot’s Operating Handbook (POH).

CAUTION: AIR TRAPPED IN THE PROPELLER HYDRAULIC CYLINDER WILL CAUSE PITCH CONTROL TO BE IMPRECISE AND CAN CAUSE PROPELLER SURGING.

(3) Cycle the propeller control through the operating blade range from low pitch (or reverse), to high pitch (or as specified in the POH).

(a) Repeat this step at least three times.

NOTE: Cycling the propeller control purges air from the propeller hydraulic system and introduces warm oil to the cylinder.
(4) Check the propeller speed control and operation from low pitch (or reverse) to high pitch using the procedure specified in the POH.

(a) Perform all ground functional, feathering, and cycling checks with the minimum propeller RPM drop required to demonstrate function.

1 A typical RPM drop for a feathering propeller is 300-500 RPM.

2 A typical RPM drop for a non-feathering propeller is 100-300 RPM.

WARNING: ABNORMAL VIBRATION CAN BE AN INDICATION OF A FAILING PROPELLER BLADE OR BLADE RETENTION COMPONENT. AN IN-FLIGHT BLADE SEPARATION CAN RESULT IN DEATH, SERIOUS BODILY INJURY, AND/OR SUBSTANTIAL PROPERTY DAMAGE.

(5) Check for any abnormal vibration during this run-up.

(a) If vibration occurs, shut the engine down, determine the cause, and correct it before further flight.

1 Refer to the section, “Vibration” in the Testing and Troubleshooting chapter of this manual to determine the cause/correction for the vibration.

(6) Shut down the engine in accordance with the POH.

(7) For additional inspection information (including possible corrections), refer to the section, “Inspection Procedures” in this chapter, and/or the Testing and Troubleshooting chapter of this manual.

(8) Refer to the POH and the airframe manufacturer’s manual for additional operational checks.
B. Static RPM Check

NOTE: This operational check should be performed after installation, maintenance, or propeller adjustment.

CAUTION: A CALIBRATED TACHOMETER MUST BE USED TO MAKE SURE OF THE ACCURACY OF THE RPM CHECK.

1. Set the brakes and chock the aircraft or tie aircraft down.
2. Back the Maximum RPM Stop on the governor out one turn.
3. Start the engine.
4. Advance the propeller control lever to MAX (max RPM), then retard the control lever one inch (25.4 mm).
5. SLOWLY advance the throttle to the maximum manifold pressure.
6. Slowly advance the propeller control lever until the engine speed stabilizes.
 a. If engine speed stabilizes at the maximum power static RPM specified by the TC or STC holder, then the low pitch stop is set correctly.
 b. If engine speed stabilizes above or below the rated RPM, the low pitch stop may require adjustment. Refer to the Maintenance Practices chapter of this manual.
7. Stop the engine.
8. Return the Maximum RPM Stop on the governor to the original position.
9. Test fly the aircraft to confirm the maximum rated RPM specified in the aircraft TC or STC is achieved.
 a. Adjust the governor to the rated RPM with the Maximum RPM Stop screw.
 1. If the governor is adjusted to the rated RPM with the maximum RPM stop screw, hold the maximum RPM stop screw in place and torque the maximum RPM stop locking nut in accordance with Table 3-1, Torque Table.
(10) Refer to the Aircraft Maintenance Manual for additional procedures that may be required after propeller installation.

C. Post-Run Check
 (1) After engine shutdown, check propeller for signs of grease/oil leakage.

D. Propeller Ice Protection System
 (1) Refer to the Anti-ice and De-ice Systems chapter in this manual for operational checks and troubleshooting information for Hartzell Propeller Inc. ice protection systems.
3. **Required Periodic Inspections and Maintenance**

CAUTION: INSTRUCTIONS AND PROCEDURES IN THIS SECTION MAY INVOLVE PROPELLER CRITICAL PARTS. REFER TO THE INTRODUCTION CHAPTER OF THIS MANUAL FOR INFORMATION ABOUT PROPELLER CRITICAL PARTS. REFER TO THE ILLUSTRATED PARTS LIST CHAPTER OF THE APPLICABLE OVERHAUL MANUAL(S) FOR THE IDENTIFICATION OF SPECIFIC PROPELLER CRITICAL PARTS.

A. **Periodic Inspections**

(1) Perform the following inspection procedures at intervals between 80 to 120 hours, not to exceed twelve (12) calendar months. Procedures involved in these inspections are detailed below.

 (a) Inspection and maintenance specified by an airframe manufacturer’s maintenance program and approved by the applicable airworthiness agency may not coincide with the inspection time intervals specified.

 1 In this situation, the airframe manufacturer’s schedule may be applied as long as the calendar limit for the inspection interval does not exceed twelve (12) months.

 (b) For additional inspection information (including possible corrections), refer to the section, “Inspection Procedures” in this chapter, and/or the Testing and Troubleshooting chapter of this manual.

(2) Remove the spinner dome.

(3) Visually examine the propeller blades (lead edge, trail edge, face, and camber sides) for nicks, gouges, erosion, cracks, etc.

 (a) Refer to the section, “Composite Blades” in the Maintenance Practices chapter of this manual for damage evaluation and repair information.
CAUTION: DO NOT ATTEMPT TO REPAIR A CRACKED HUB.

(3) Visually inspect the hub parts for cracks or wear. Refer to Grease and Oil Leaks in the Inspection Procedures section of this chapter for procedure. A cracked hub must be referred to an appropriately licensed propeller repair facility.

(4) Inspect all visible propeller parts for cracks, wear or unsafe conditions.

(5) Check for oil and grease leaks. Refer to Grease and Oil Leaks in the Inspection Procedures section of this chapter for procedure.

(6) If a blade track problem is suspected, check the blade track. Refer to Blade Track in the Inspection Procedures section of this chapter.

(7) For Hartzell composite propeller blade models ()7690(), ()7890(), and ()7421() installed on an undampened or modified Lycoming (AE)IO-360 engine, perform a visual on-wing inspection of the blade shank every 50 flight hours. Refer to the On Wing Blade Shank Inspection section in the Maintenance Practices chapter of this manual.

(a) For the purposes of this inspection, “modified” refers to engines that have had changes that may effect the vibratory characteristics of the engine such as, but not limited to, increased compression ratio, changes to boost horsepower, aftermarket turbo chargers, running at higher than rated RPM, and removing dampeners.

(8) For (-2) feathering propellers that incorporate an air charge in the cylinder, check pressure every 100 hours or once a month, whichever comes first. Refer to the Maintenance Practices chapter of this manual for procedures.

(a) If the propeller air pressure is routinely low, or there is engine oil leaking from the air valve, the cause may be a faulty seal in the propeller. An inspection to verify the condition of the seal should be performed at a certified propeller repair station with the appropriate rating.
(9) Hartzell Propeller Inc. recommends that propeller owners/operators calibrate the engine tachometer in accordance with the National Institute of Standards and Technology (NIST) or similar national standard (traceable). Refer to the section, “Tachometer Calibration” in the Maintenance Practices chapter of this manual.

(10) Examine the accumulator for a label that shows the part number 8907-040. Refer to the section, "Accumulator Part Number Change" in the Maintenance Practices chapter of this manual for the procedure to change the accumulator labels.

(11) If an anti-ice system is installed, clean or replace the anti-ice system filter.

(12) Make an entry in the propeller logbook about completion of these inspections.

B. Periodic Maintenance

(1) Lubricate the propeller assembly.

(a) Refer to the section, "Lubrication" in the Maintenance Practices chapter of this manual for intervals and procedures.

C. Periodic Coin-Tap Inspections for Composite Blades

(1) Perform a coin-tap inspection of the exposed section of the blade at intervals not to exceed 1200 flight hours.

(2) Perform a coin-tap inspection of the erosion shield surface at intervals not to exceed 600 flight hours.

(3) Refer to Hartzell Propeller Inc. Composite Blade Field Maintenance and Minor Repair Manual 170 (61-13-70) for the coin-tap inspection procedure.
D. Airworthiness Limitations

(1) Certain components, as well as the entire propeller may have specific life limits established as part of the certification by the FAA. Such limits call for mandatory replacement of specified parts after a defined number of hours and/or cycles of use.

(2) Life limited component times may exist for the propeller models covered in this manual. Refer to the Airworthiness Limitations chapter of this manual.

(3) Operators are urged to keep informed of airworthiness information via Hartzell Propeller Inc. Service Bulletins and Service Letters, which are available from Hartzell Propeller Inc. distributors or from the Hartzell Propeller Inc. factory by subscription. Selected information is also available on Hartzell Propeller's website at www.hartzellprop.com.
E. Overhaul Periods

(1) In flight, the propeller is constantly subjected to vibration from the engine and the airstream, as well as high centrifugal forces.

(2) The propeller is also subject to corrosion, wear, and general deterioration due to aging. Under these conditions, metal fatigue or mechanical failures can occur.

(3) To protect your safety, your investment, and to maximize the safe operating lifetime of your propeller, it is essential that a propeller be properly maintained and overhauled according to the recommended service procedures.

CAUTION: THE OVERHAUL PERIODS SPECIFIED IN THIS MANUAL ARE CURRENT AT THE TIME OF THIS PUBLICATION. HOWEVER, OVERHAUL PERIODS MAY BE INCREASED OR DECREASED AS A RESULT OF EVALUATION. CHECK THE LATEST REVISION OF HARTZELL PROPELLER INC. SERVICE LETTER HC-SL-61-61Y FOR THE MOST CURRENT INFORMATION.

(a) Propellers installed on piston engine aerobatic aircraft (certificated as aerobatic or other aircraft routinely exposed to aerobatic use) must be overhauled at 1000 hours. See paragraph 3.D.(8) for calendar limits.

(b) Propellers installed on agricultural aircraft must be overhauled at 2000 hours. Calendar time is limited to 36 months. These limits apply even if the propeller is later installed on a non-agricultural category aircraft.

(c) Propellers installed on Franklin engines must be overhauled at 1500 hours. Refer to paragraph 3.D.(8) for calendar limits.

(d) Two blade propellers manufactured before April 1997 must be overhauled at 2000 hours. Refer to paragraph 3.D.(8) for calendar limits.
(e) Two blade propellers manufactured after April 1997 (identified by a "B" suffix in the propeller serial number) must be overhauled at 2400 hours. Calendar time is limited to 72 months.

(f) Three blade propellers manufactured before 1983 must be overhauled at 2000 hours. Refer to paragraph 3.D.(8) for calendar limits.

(g) Three blade propellers manufactured after 1983 must be overhauled at 2400 hours. Refer to paragraph 3.D.(8) for calendar limits.

(h) Propellers manufactured or overhauled since October 1991 are required to have the internal hub surface painted for additional corrosion protection. Hubs with painted internal surface have a 72 month overhaul calendar limit. Hubs that have not had the internal surface painted have a 60 month overhaul calendar limit until the hub internal surface is painted for corrosion protection. After painting, calendar limit increases to 72 months.
4. **Inspection Procedures**

The following inspections must be made on a regular basis, either before flight, during required periodic inspection as described in this chapter, or if a problem is found. Possible corrections to problems discovered during inspections, additional inspections, and limits are detailed in the following inspection procedures.

A. **Blade Damage**

 (1) Refer to the section, "Composite Blades" in the Maintenance Practices chapter of this manual for damage evaluation and repair information.

B. **Grease/Oil Leakage** (Rev. 1)

WARNING: UNUSUAL OR ABNORMAL GREASE LEAKAGE OR VIBRATION, WHERE THE CONDITION INITIATED SUDDENLY, CAN BE AN INDICATION OF A FAILING PROPELLER BLADE OR BLADE RETENTION COMPONENT. AN INFLIGHT BLADE SEPARATION CAN RESULT IN DEATH, SERIOUS BODILY INJURY, AND/OR SUBSTANTIAL PROPERTY DAMAGE. UNUSUAL OR ABNORMAL GREASE LEAKAGE OR VIBRATION DEMANDS IMMEDIATE INSPECTION.

(1) **Important Information**

 (a) A new or newly overhauled propeller may leak slightly during the first several hours of operation. This leakage may be caused by the seating of seals and O-rings, and the slinging of lubricants used during assembly. Leakage should cease within the first ten hours of operation.

 (b) Leakage that persists beyond the first ten hours of operation on a new or newly overhauled propeller, or occurs on a propeller that has been in service for some time will require repair.

1. A determination should be made as to the source of the leak. If the source of the leak is the O-ring seal between the engine and the propeller flange, field repair is permitted.
2. All other leakage repairs should be referred to a certified propeller repair station with the appropriate rating.

3. If abnormal grease leakage is detected, inspect the propeller assembly using the Inspection Procedure steps in this section.

(c) Grease Leakage - Probable Cause:
 1. Loose/defective lubrication fitting
 2. Damaged blade shank to hub O-ring seal
 3. Damaged hub seal (at hub parting line)
 4. Damaged hub/engine flange interface O-ring
 5. Cracked hub

(2) Inspection Procedure
 (a) Remove the spinner dome.

 CAUTION: PERFORM A VISUAL INSPECTION WITHOUT CLEANING THE PARTS. A TIGHT CRACK IS OFTEN EVIDENT DUE TO TRACES OF GREASE EMANATING FROM THE CRACK. CLEANING CAN REMOVE SUCH EVIDENCE AND MAKE A CRACK VIRTUALLY IMPOSSIBLE TO SEE.

 (b) Perform a visual inspection of the hub, blades, and blade retention areas to locate the source of the grease leak.

 1. If the source of the grease leak is a lubrication fitting, blade O-ring, or hub parting line, repairs can be accomplished during scheduled maintenance as long as flight safety is not compromised.

 a. To repair a grease leak from a lubrication fitting, blade O-ring, or hub parting line, the propeller must be disassembled and inspected at a certified propeller repair station with the appropriate rating.
2 If the source of the grease leak is a component or location other than a lubrication fitting, blade O-ring, or the hub parting line, the propeller must be disassembled and inspected at a certified propeller repair station with the appropriate rating before further flight.

(c) Perform a visual inspection for cracks in the hub.
 1 Extra attention should be given to the blade retention area of the hub.
 2 A crack may be visible or may be indicated by grease leaking from a seemingly solid surface.

(d) If cracks are suspected, additional inspections to verify the condition must be performed before further flight.
 1 Inspections typically include disassembly of the propeller followed by inspection of parts, using nondestructive methods in accordance with published procedures.
 a These inspections must be performed by a certified propeller repair station with the appropriate rating.

(e) If cracks or failing components are found, these parts must be replaced before further flight.
 1 Report such occurrences to the appropriate airworthiness authorities and to Hartzell Propeller Inc. Product Support.
C. Vibration (Rev. 1)

NOTE: Vibration may originate in the engine, propeller, or airframe. Troubleshooting procedures typically begin with an investigation of the engine. Airframe components (such as engine mounts or loose landing gear doors) can also be the source of vibration. When investigating an abnormal vibration, the blades and the blade retention components should be considered as potential sources of the vibration.

(1) Important Information

(a) Instances of abnormal vibration should be investigated immediately. If the cause of the vibration is not readily apparent, examine the propeller in accordance with the instructions in this section.

(b) Perform troubleshooting and evaluation of possible sources of vibration in accordance with engine or airframe manufacturer's instructions.

(c) Refer to the section, "Vibration" in the Testing and Troubleshooting chapter of this manual.

1 Perform the checks to determine possible cause of the vibration.
 a If no cause is found, the propeller could be the source of the vibration. Examine the propeller in accordance with the Inspections steps in this section.

(2) Inspection

(a) Remove the spinner dome.

(b) Visually examine the hub, blades, and blade clamps (if applicable) for cracks.

1 Pay particular attention to the blade retention areas of the hub.

2 A crack may be readily visible, or may be indicated by grease leaking from a seemingly solid surface.
(c) If cracks are suspected, additional inspections must be performed before further flight.

1 These inspections typically include disassembly of the propeller, followed by inspection of parts, using nondestructive methods in accordance with published procedures.

2 These inspections must be performed at a certified propeller repair station with the appropriate rating.

(d) Inspect the movement of the propeller blades in accordance with the section, "Loose Blades" in this chapter.

(e) Inspect blade track in accordance with the section, "Blade Track" in this chapter.

CAUTION: DO NOT USE BLADE PADDLES TO TURN THE BLADES.

1 Manually (by hand) attempt to turn the blades (change pitch).

2 Visually check for damaged blades.

(f) If abnormal blade conditions or damage are found, additional inspections must be performed to evaluate the condition before further flight.

1 These inspections must be performed at a certified propeller repair station with the appropriate rating.

(g) If cracks or failing components are found, these parts must be replaced before further flight.

1 Report such incidents to airworthiness authorities and Hartzell Propeller Inc. Product Support.
D. Blade Track

(1) Check blade track as follows:

(a) Chock the aircraft wheels securely.

(b) Refer to Figure 5-1. Place a fixed reference point beneath the propeller, within 0.25 inch (6.00 mm) of the lowest point of the propeller arc.

NOTE: This reference point may be a flat board with a sheet of paper attached to it. The board may then be blocked up to within 0.25 inch (6.00 mm) of the propeller arc.

WARNING: MAKE SURE THAT THE ENGINE MAGNETO IS GROUNDED (OFF) BEFORE ROTATING THE PROPELLER.

(c) Rotate the propeller by hand (opposite the direction of normal rotation) until a blade points directly at the paper. Mark the position of the blade tip in relation to the paper.

(d) Repeat this procedure with the remaining blades.

(e) Tracking tolerance is ±0.125 inch (±3.18 mm) or 0.250 inch (6.35 mm) total.

Checking Blade Track
Figure 5-1
(2) Possible Correction

(a) Remove foreign matter from the propeller mounting flange.

(b) If no foreign matter is present, refer to an appropriately licensed propeller repair facility.
E. Loose Blades

(1) Limits for blade movement are specified below. Refer to Figure 5-2.

(a) End Play (leading edge to trailing edge)
(b) Fore & Aft Movement (face to camber)
(c) In & Out Movement None
(d) Radial Play ±0.5 degree
 (pitch change) (1 degree total)
 measured at reference station

(2) Blades should be tight in the propeller, however movement that is within the allowable limits is acceptable if the blade returns to its original position when released.

(a) If blade movement is greater than the allowable limits, or if the blade(s) do not return to their original position when released, there may be internal wear or damage that should be referred to a certified propeller repair station with an appropriate rating.
F. Corrosion (Rev. 1)

WARNING: REPAIR THAT INVOLVES COLD WORKING THE METAL, RESULTING IN CONCEALMENT OF A DAMAGED AREA IS NOT PERMITTED.

(1) Corrosion of any type on the hub or heavy corrosion on other parts that results in severe pitting must be referred to a certified propeller repair station with an appropriate rating.

G. Spinner Damage (Rev. 1)

(1) Inspect the spinner for cracks, missing hardware, or other damage.

(a) Metal Spinners

1. For damage evaluation and repair information, refer to Hartzell Propeller Inc. Manual 127 (61-16-27) or a certified propeller repair station with the appropriate rating.

2. Contact the local airworthiness authority for repair approval.

(b) Composite Spinners

1. For damage evaluation and repair information, refer to Hartzell Propeller Inc. Manual 173 (61-10-73) or a certified propeller repair station with the appropriate rating.

2. Contact the local airworthiness authority for repair approval.

H. Accumulator

(1) Check the accumulator air charge at 50 flight hours or six (6) months, whichever occurs first.

(2) Using dry air or nitrogen, charge the accumulator at 15 to 25 psi (103.4 to 172.4 kPa).

I. Propeller Ice Protection System (Rev. 1)

(1) Refer to the Anti-ice and De-ice Systems chapter of this manual for operational checks and troubleshooting information.
Percent Overspeed – Reciprocating Engines Only

Requires Evaluation by Appropriately Licensed Propeller Repair Facility

No Action Required

Reciprocating Engine Overspeed Limits

Figure 5-3
5. **Special Inspections (Rev. 1)**

CAUTION: INSTRUCTIONS AND PROCEDURES IN THIS SECTION MAY INVOLVE PROPELLER CRITICAL PARTS. REFER TO THE INTRODUCTION CHAPTER OF THIS MANUAL FOR INFORMATION ABOUT PROPELLER CRITICAL PARTS. REFER TO THE ILLUSTRATED PARTS LIST CHAPTER OF THE APPLICABLE OVERHAUL MANUAL(S) FOR THE IDENTIFICATION OF SPECIFIC PROPELLER CRITICAL PARTS.

A. Overspeed/Overtorque

1. An overspeed occurs when the propeller RPM exceeds the maximum RPM stated in the applicable Aircraft Type Certificate Data Sheet. The duration of time and magnitude of overspeed for a single event determines the corrective action that must be taken to make sure no damage to the propeller has occurred.

2. The criteria for determining the required action after an overspeed are based on many factors. The additional centrifugal forces that occur during overspeed are not the only concern. Some applications have sharp increases in vibratory stresses at RPMs above the maximum rated for the airframe/engine/propeller combination.

 (a) When a propeller installed on a reciprocating engine has an overspeed event, refer to the Reciprocating Engine Overspeed Limits (Figure 5-3) to determine the appropriate corrective action.

 (b) If an overspeed requiring propeller evaluation occurs on an aircraft using a Hartzell Propeller Inc. governor, the governor must be evaluated by a certified propeller repair station with the appropriate rating.

 (c) Make a record of the overspeed event in the propeller logbook, indicating any corrective action(s) taken.
B. Lightning Strike (Rev. 1)

CAUTION 1: REFER TO THE ENGINE AND AIRFRAME MANUFACTURER’S MANUALS FOR ADDITIONAL INSPECTIONS TO PERFORM AFTER A PROPELLER LIGHTNING STRIKE.

CAUTION 2: A COMPOSITE BLADE SUSPECTED OF LIGHTNING STRIKE MUST BE INSPECTED AND MAY REQUIRE OVERHAUL.

NOTE: Lightning usually enters the propeller through the metal erosion shield or the stainless steel mesh (if applicable) of a blade. The charge typically enters at the tip of the blade and travels through the erosion shield toward the hub. The charge exits the erosion shield at the inboard end and enters the next conductive element in the path.

(1) General

(a) In the event of a propeller lightning strike, an inspection is required before further flight.

(b) If the propeller meets the requirements of the "Temporary Operation Inspection" in this section, 10 hours of operation is permitted before propeller disassembly/inspection must be performed.

(2) Temporary Operation Inspection

(a) Remove the spinner dome and perform a visual inspection of the propeller, blades, spinner, and ice protection system for evidence of damage that would require repair before flight (such as broken wires or arcing damage to the propeller hub).

1 A lightning strike indication may appear as a darkened area in proximity of the tip and at the most inboard end of the metal erosion shield.

2 Other indications include: debonding, lifting or buckling of the erosion shield, and splitting or delamination of the composite material.
(b) Perform visual and coin tap inspections of the blades that have lightning strike indications in accordance with Hartzell Propeller Inc. Composite Blade Field Maintenance and Minor Repair Manual 170 (61-13-70).

1 If the damage is within the airworthy damage limits specified in Manual 170, temporary operation for up to 10 flight hours is permitted before propeller disassembly and inspection.

2 If the damage is not within the airworthy damage limits specified in Manual 170, temporary operation is **not** permitted. The propeller must be removed from the aircraft, disassembled, evaluated, and/or repaired by a certified propeller repair station with the appropriate rating before further flight.

(c) Perform an operational check of the propeller ice protection system (if installed) in accordance with the Anti-ice and De-ice Systems chapter of this manual.

(d) Make a record of the lightning strike in the propeller logbook, indicating any corrective actions(s) taken.

(3) For flight beyond the 10-hour temporary operation limit:

(a) The propeller must be removed from the aircraft, disassembled, evaluated, and/or repaired by a certified propeller repair station with the appropriate rating.
C. Foreign Object Strike/Ground Strike

(1) General

(a) A foreign object strike can include a broad spectrum of damage, from a minor stone nick to severe ground impact damage.

1 A conservative approach in evaluating the damage is required because there may be hidden damage that is not readily apparent during an on-wing, visual inspection.

(b) A foreign object strike is defined as:

1 Any incident, whether or not the engine is operating, that requires repair to the propeller other than minor dressing of the blades.

a Examples of foreign object strike include situations where an aircraft is stationary and the landing gear collapses, causing one or more blades to be significantly damaged, or where a hangar door (or other object) strikes the propeller blade(s).

b These cases should be handled as foreign object/ground strikes because of potentially severe side loading on the propeller hub, blades, and retention bearings.

2 Any incident during engine operation in which the propeller impacts a solid object that causes a drop in revolutions per minute (RPM) and also requires structural repair of the propeller (incidents requiring only paint touch-up are not included). This is not restricted to propeller strikes against the ground.

3 A sudden RPM drop while impacting water, tall grass, or similar yielding medium, where propeller blade damage is not normally incurred.

(c) In the event of a foreign object strike, an inspection is required before further flight.
(2) Inspection Procedure

(a) Examine the propeller assembly for damage related to the foreign object/ground strike.

(b) If any of the following indications are found, the propeller must be removed from the aircraft, disassembled and overhauled by a certified propeller repair station with the appropriate rating.

1. Blade(s) damaged, bent, or out of track/angle
2. Blade(s) loose in the hub (if applicable)
3. Blade(s) rotated in the clamp (if applicable)
4. Any noticeable or suspected damage to the pitch change mechanism
5. Any blade diameter reduction
6. Bent, cracked, or failed engine shaft
7. Vibration during operation (that was not present before the event)

(c) Composite Blades: Perform a thorough visual inspection and a coin-tap inspection of each blade (including the metal erosion shield) in accordance with Hartzell Propeller Inc. Composite Blade Field Maintenance and Minor Repair Manual 170 (61-13-70).

1. If the blade damage is not within the airworthy damage limits, the blade(s) must be repaired before further flight.

 NOTE: It is not necessary to remove the de-ice/anti-icing boot for this inspection.

(d) Engine mounted components - such as governors, pumps, etc. may be damaged by a foreign object strike, especially if the strike resulted in a sudden stoppage of the engine.

1. These components should be inspected, repaired, or overhauled as recommended by the applicable component maintenance manual.

(e) Make a record of the foreign object/ground strike event in the propeller logbook, indicating any corrective action(s) taken.
D. Fire/Heat Damage (Rev. 1)

WARNING: HIGH TEMPERATURES CAN CAUSE SERIOUS DAMAGE TO PROPELLER HUBS, CLAMPS, AND BLADES (ALUMINUM AND COMPOSITE). THIS DAMAGE CAN RESULT IN CATASTROPHIC FAILURE CAUSING DEATH, SERIOUS BODILY INJURY, AND/OR SUBSTANTIAL PROPERTY DAMAGE.

(1) A propeller that has been exposed to fire or high temperatures, such as an engine or hangar fire, must be inspected by a certified propeller repair station with the appropriate rating before further flight.

E. Sudden Stoppage (Rev. 1)

(1) When there is a propeller sudden stoppage because of catastrophic engine failure or seizure, the propeller and any engine driven/powered accessory must be removed from the aircraft, disassembled, evaluated, and/or repaired by a certified propeller repair station with the appropriate rating before further flight.

(2) If the sudden stoppage was caused by a foreign object strike, refer to the section, “Foreign Object/Ground Strike” in this chapter.

F. Engine Oil Contamination (Rev. 1)

(1) Following an incident of oil contamination, the components of the propeller that were exposed to oil contamination must be removed, cleaned, and inspected.

(a) A propeller that was exposed to oil contamination must be removed and sent to a certified propeller repair station with the appropriate rating for disassembly, cleaning, and inspection.

(b) A governor that was exposed to oil contamination must be disassembled and inspected by a certified propeller repair station with the appropriate rating.
6. **Long Term Storage** (Rev. 1)

 A. Important Information

 (1) Parts shipped from Hartzell Propeller Inc. are not shipped or packaged in a container that is designed for long term storage.

 (2) Long term storage procedures may be obtained by contacting a Hartzell distributor, or the Hartzell Propeller Inc. Product Support Department.

 (a) Refer to the Introduction chapter of this manual for contact information.

 (b) Storage information is also detailed in Hartzell Propeller Inc. Standard Practices Manual 202A (61-01-02).

 (3) Information regarding the return of a propeller assembly to service after long term storage may be obtained by contacting a Hartzell distributor, or the Hartzell Propeller Inc. Product Support Department.

 (a) Refer to the Introduction chapter of this manual for contact information.

 (b) This information is also detailed in Hartzell Propeller Inc. Standard Practices Manual 202A (61-01-02).

 B. Composite Blades

 (1) In addition to the long term storage requirements specified in Hartzell Propeller Inc. Standard Practices Manual 202A (61-01-02), the maximum permitted storage temperature for Hartzell Propeller Inc. composite blades is 180°F (82°C).
MAINTENANCE PRACTICES - CONTENTS

1. Cleaning ... 6-5
 A. General Cleaning .. 6-5
 B. Spinner Cleaning and Polishing .. 6-8
2. Lubrication ... 6-9
 A. Lubrication Intervals ... 6-9
 B. Lubrication Procedure ... 6-11
 C. Approved Lubricants ... 6-14
3. Air Charge (-2 Propellers) ... 6-15
 A. Charging the Propeller ... 6-15
4. Composite Blades .. 6-16
 A. Inspection Requirements ... 6-16
 B. Damage Evaluation and Repair Limits ... 6-16
 C. Blade Repairs ... 6-16
5. Blade Paint Touch-Up .. 6-17
 A. Important Information .. 6-17
 B. Paint ... 6-18
 C. Procedure .. 6-20
 D. Optional Removal of Leading Edge Paint
 for N7605(B,K) and N7605C() Blades ... 6-22
6. Dynamic Balance .. 6-23
 A. Overview ... 6-23
 B. Inspection Procedures Before Balancing .. 6-24
 C. Modifying Spinner Bulkhead to Accommodate Dynamic
 Balance Weights .. 6-25
 D. Placement of Balance Weights for Dynamic Balance 6-26
7. Propeller Low Pitch Setting .. 6-27
 A. Low Pitch Stop - All Propeller Models ... 6-27
 B. Max. RPM (Static) Low Pitch Stop Adjustment 6-29
 C. Modification of the Low Pitch Stop Hardware 6-36
8. Propeller High Pitch Settings ... 6-39
 A. High Pitch (Min. RPM) Stop Adjustment .. 6-39
9. Feathering Pitch Stop Setting ... 6-39
 A. Feathering Pitch Stop Adjustment ... 6-39
10. Start Lock Settings ... 6-39
 A. Start Lock Adjustment ... 6-39
MAINTENANCE PRACTICES - CONTENTS, CONTINUED

11 Accumulator Part Number Change .. 6-40
 A. General ... 6-40
 B. Material Information .. 6-41
 C. Accomplishment Instructions .. 6-41

12 Erosion Tape Installation ... 6-43
 A. General ... 6-43
 B. Materials Required .. 6-44
 C. Installation Procedure ... 6-44

13 Propeller Ice Protection Systems ... 6-47
 A. Maintenance Information .. 6-47

14 Tachometer Calibration ... 6-48
 A. Important Information ... 6-48
 B. Tachometer Calibration .. 6-49
LIST OF FIGURES

- Grease Fitting and Air Charge Valve Location .. Figure 6-1 6-6
- Lubrication Fitting/Hole Plugs .. Figure 6-2 6-10
- Lubrication Label ... Figure 6-3 6-12
- Low Pitch Stop Adjustment (-1, -4) ... Figure 6-4 6-28
 - Low Pitch Stop Adjustment for -2 Propellers That Use a
 Two-piece Spinner Dome .. Figure 6-5 6-30
 - Low Pitch Stop Adjustment for -2 Propellers That Use a
 One-piece Spinner Dome .. Figure 6-6 6-32
- Hex Nut Configuration ... Figure 6-7 6-35
- Accumulator Part Number Change ... Figure 6-8 6-40

LIST OF TABLES

- Air Charge Pressure ... Table 6-1 6-15
- Approved Touch-up Paints .. Table 6-2 6-19
- Erosion Tape Length
 (Blades without De-ice/Anti-ice Boot Only) Table 6-3 6-42
1. Cleaning (Rev. 1)

CAUTION 1: INSTRUCTIONS AND PROCEDURES IN THIS SECTION MAY INVOLVE PROPELLER CRITICAL PARTS. REFER TO THE INTRODUCTION CHAPTER OF THIS MANUAL FOR INFORMATION ABOUT PROPELLER CRITICAL PARTS. REFER TO THE ILLUSTRATED PARTS LIST CHAPTER OF THE APPLICABLE OVERHAUL MANUAL(S) FOR THE IDENTIFICATION OF SPECIFIC PROPELLER CRITICAL PARTS.

CAUTION 2: BEFORE CLEANING THE PROPELLER, BE SURE THE PROPELLER HAS BEEN INSPECTED IN ACCORDANCE WITH THE REQUIRED PERIODIC INSPECTIONS SPECIFIED IN THIS MANUAL. CLEANING THE PROPELLER PRIOR TO INSPECTION MAY REMOVE EVIDENCE OF A CONDITION THAT REQUIRES CORRECTIVE ACTION.

CAUTION 3: DO NOT USE PRESSURE WASHING EQUIPMENT TO CLEAN THE PROPELLER OR CONTROL COMPONENTS. PRESSURE WASHING CAN FORCE WATER AND/OR CLEANING FLUIDS PAST SEALS AND LEAD TO INTERNAL CORROSION OF PROPELLER COMPONENTS.

A. General Cleaning

CAUTION 1: WHEN CLEANING THE PROPELLER, DO NOT ALLOW SOAP OR SOLVENT SOLUTIONS TO RUN OR SPLASH INTO THE HUB AREA.

CAUTION 2: DO NOT CLEAN THE PROPELLER WITH CAUSTIC OR ACIDIC SOAP SOLUTIONS. IRREPARABLE CORROSION OF PROPELLER COMPONENTS MAY OCCUR.

(1) Remove the spinner dome in accordance with the Installation and Removal chapter in this manual.
Grease Fitting and Air Charge Valve Location

Figure 6-1

LUBRICATION FITTING (CYLINDER SIDE HUB HALF)

AIR CHARGE VALVE (2 PROPELLERS ONLY)

LUBRICATION FITTING (ENGINE SIDE HUB HALF)
WARNING: ADHESIVES AND SOLVENTS ARE FLAMMABLE AND TOXIC TO THE SKIN, EYES AND RESPIRATORY TRACT. SKIN AND EYE PROTECTION ARE REQUIRED. AVOID PROLONGED CONTACT. USE IN WELL VENTILATED AREA.

CAUTION: DO NOT USE ANY SOLVENT DURING CLEANING THAT COULD SOFTEN OR DESTROY THE BOND BETWEEN CHEMICALLY ATTACHED PARTS.

(2) Using a clean cloth dampened with Stoddard solvent CM23 or equivalent, wipe the inside of the spinner dome to remove grease, oil, and other residue.

(a) Immediately dry the inside of the spinner dome using a clean dry cloth.

(3) Using a clean cloth dampened with Stoddard solvent CM23 or equivalent, wipe the accessible surfaces of the hub, counterweight clamps, slip ring, and bulkhead to remove grease, oil, and other residue.

(4) Fill a tank sprayer with a non-caustic/non-acidic soap solution.

IMPORTANT: WHEN PERFORMING STEPS 5 THRU 7, THE BLADE(S) TO BE CLEANED MUST POINT DOWNWARD. THIS WILL PREVENT THE SOAP SOLUTION AND/OR CONTAMINANTS FROM FLOWING INTO THE HUB/BLADE SEAL AREA.

CAUTION: DO NOT LET THE SOAP SOLUTION DRY ON THE SURFACES OF THE HUB, BULKHEAD, OR SLIP RING.

(5) Using the tank sprayer, apply a fine mist of the soap solution to the surfaces of the downward facing blades, and the hub, bulkhead, and slip ring around the downward facing blades.

(a) Use a cloth or soft nylon brush to loosen dirt and unwanted material on the surfaces where the soap solution was applied, particularly on the inboard surface of the counterweight clamp.
(6) Using clean potable water at low pressure, rinse the surfaces where the soap solution was applied to remove dirt, unwanted material, and soap residue.

(7) Use a clean dry cloth to dry the surfaces cleaned in the previous steps.

(8) Rotate the propeller so that the next blade(s) to be cleaned are pointing downward, then repeat steps 5 thru 7.

(a) Repeat steps 5 thru 8 until all blades have been cleaned and dried.

(9) Let the propeller dry.

(10) Using a spray applicator, apply a thin, even layer of A-6741-345 anti-corrosion compound to all surfaces of the hub, slip ring, bulkhead, and particularly the surfaces of the counterweight clamp.

(a) Use a clean cloth to wipe excess A-6741-345 anti-corrosion compound from any areas where there is puddling, dripping, or excessive application.

(11) Install the spinner dome in accordance with the Installation and Removal chapter in this manual.

B. Spinner Cleaning and Polishing

(1) Clean the spinner using the General Cleaning procedures in this section.

(2) If an aluminum spinner dome is installed, polish the dome (if required) with an automotive-type aluminum polish.
2. **Lubrication** (Rev. 1)

CAUTION: INSTRUCTIONS AND PROCEDURES IN THIS SECTION MAY INVOLVE PROPELLER CRITICAL PARTS. REFER TO THE INTRODUCTION CHAPTER OF THIS MANUAL FOR INFORMATION ABOUT PROPELLER CRITICAL PARTS. REFER TO THE ILLUSTRATED PARTS LIST CHAPTER OF THE APPLICABLE OVERHAUL MANUAL(S) FOR THE IDENTIFICATION OF SPECIFIC PROPELLER CRITICAL PARTS.

A. **Lubrication Intervals**

1. The propeller must be lubricated at intervals not to exceed 100 hours or at 12 calendar months, whichever occurs first.

 a. If propeller operation in a six month period from the last lubrication interval is less than 50 hours, the propeller must be re-lubricated.

 b. If the aircraft is operated or stored under adverse atmospheric conditions, e.g., high humidity, salt air, calendar lubrication intervals should be reduced to six months.

2. Owners of high use aircraft may wish to extend their lubrication interval. Lubrication interval may be gradually extended after evaluation of previous propeller overhauls with regard to bearing wear and internal corrosion.

3. New or newly overhauled propellers should be lubricated after the first one or two hours of operation because centrifugal loads will pack and redistribute grease which can result in a propeller imbalance. Redistribution of grease may also result in voids in the blade bearing area where moisture can collect.

 a. Purchasers of new aircraft should check the propeller logbook to verify whether the propeller was lubricated by the manufacturer during flight testing. If it was not lubricated, the propeller should be serviced at the earliest convenience.
NOTE: A tractor/pusher propeller with clockwise (standard) rotation is shown in this illustration.

Lubrication Fittings/Hole Plugs
Figure 6-2
B. Lubrication Procedure

WARNING 1: FOLLOW LUBRICATION PROCEDURES CORRECTLY TO MAINTAIN AN ACCURATE BALANCE OF THE PROPELLER ASSEMBLY

WARNING 2: PITCH CONTROL DIFFICULTY COULD RESULT IF THE PROPELLER IS NOT CORRECTLY LUBRICATED.

1. Remove the propeller spinner.
2. Each blade socket has two lubrication fittings or one lubrication fitting and one lubrication hole plug. Refer to Figure 6-2.
3. Remove the lubrication fitting caps from the lubrication fittings.
4. Remove the lubrication fittings or hole plugs, as applicable.
 a. For all tractor or pusher propellers with clockwise (standard) rotation when viewed from BEHIND the aircraft, remove the lubrication fittings P/N A-279 or C-6349 or lubrication hole plugs P/N 106545 from the CYLINDER-SIDE hub half.
 b. For all tractor or pusher propellers with counter-clockwise (backward) rotation when viewed from BEHIND the aircraft, remove the lubrication fittings P/N A-279 or C-6349 or lubrication hole plugs P/N 106545 in the ENGINE-SIDE hub half.
5. Using a piece of safety wire, loosen any blockage or hardened grease at the threaded holes where the lubrication plug was removed.
WARNING: WHEN MIXING AEROSHELL GREASES 5 AND 6, AEROSHELL GREASE 5 MUST BE INDICATED ON THE LABEL (HARTZELL PROPELLER INC. P/N A-3594-[]) AND THE AIRCRAFT MUST BE PLACARD TO INDICATE THAT FLIGHT IS PROHIBITED IF THE OUTSIDE AIR TEMPERATURE IS LESS THAN -40°F (-40°C).

CAUTION: USE HARTZELL PROPELLER INC. APPROVED GREASE ONLY. EXCEPT IN THE CASE OF AEROSHELL GREASES 5 AND 6, DO NOT MIX DIFFERENT SPECIFICATIONS AND/OR BRANDS OF GREASE.

(6) Aeroshell greases 5 and 6 both have a mineral oil base and have the same thickening agent; therefore, mixing of these two greases is permitted in Hartzell Propeller Inc. propellers.

(7) A label is normally applied to the propeller to indicate the type of grease previously used. Refer to Figure 6-3.

(a) This grease type should be used during re-lubrication unless the propeller has been disassembled and the old grease removed.

(b) It is not possible to purge old grease through lubrication fittings.

(c) To completely replace one grease with another, the propeller must be disassembled in accordance with the applicable overhaul manual.

THIS PROPELLER WAS LUBRICATED WITH THIS GREASE MUST BE USED ON ALL SUBSEQUENT LUBRICATIONS.

LABEL A-3594

Lubrication Label
Figure 6-3
CAUTION 1: OVER-LUBRICATING AN ALUMINUM HUB PROPELLER MAY CAUSE THE GREASE TO ENTER THE HUB CAVITY, LEADING TO EXCESSIVE VIBRATION AND/OR SLUGGISH OPERATION. THE PROPELLER MUST THEN BE DISASSEMBLED TO REMOVE THIS GREASE.

CAUTION 2: IF A PNEUMATIC GREASE GUN IS USED, EXTRA CARE MUST BE TAKEN TO AVOID EXCESSIVE PRESSURE BUILDUP.

CAUTION 3: GREASE MUST BE APPLIED TO ALL BLADES OF A PROPELLER ASSEMBLY AT THE TIME OF LUBRICATION.

CAUTION 4: DO NOT ATTEMPT TO PUMP MORE THAN 1 FL. OZ. (30 ML) OF GREASE INTO THE LUBRICATION FITTING. USING MORE THAN 1 FL. OZ. (30 ML) OF GREASE COULD RESULT IN OVER SERVICING OF THE PROPELLER.

(8) Pump a maximum of 1 fl. oz. (30 ml) grease into the lubrication fitting, or until grease emerges from the hole where the lubrication fitting or lubrication hole plug was removed, whichever occurs first.

NOTE: 1 fl. oz. (30 ml) is approximately 6 pumps with a hand-operated grease gun.

(a) For all tractor or pusher propellers with clockwise (standard) rotation when viewed from BEHIND the aircraft, the lubrication fitting is in the ENGINE-SIDE hub half.

(b) For all tractor or pusher propellers with counter-clockwise (backward) rotation when viewed from BEHIND the aircraft, the lubrication fitting is in the CYLINDER-SIDE hub half.
(9) If a lubrication fitting (p/n A-279 or C-6349) was removed at the beginning of this procedure, it may be reinstalled or replaced with a lubrication hole plug p/n 106545.

(a) Reinstall the lubrication fitting or hole plug that was removed at the beginning of this procedure.

(b) Tighten until finger-tight, then tighten one additional 360 degree turn.

(10) Make sure that the ball of each lubrication fitting is correctly seated.

(11) Reinstall a lubrication fitting cap on each lubrication fitting.

C. Approved Lubricants

The following lubricants are approved for use in Hartzell Propeller Inc. aluminum hub propellers:

Aeroshell 6 - Recommended "all purpose" grease. Used in most new production propellers since 1989. Higher leakage/oil separation than Aeroshell 5 at higher temperatures (approximately 100°F [38°C]).

Aeroshell 5 - Good high temperature qualities, very little oil separation or leakage. Cannot be used in temperatures colder than -40°F (-40°C). Aircraft serviced with this grease must be placarded to indicate that flight is prohibited if the outside air temperature is less than -40°F (-40°C).

Aeroshell 7 - Good low temperature grease, but high leakage/oil separation at higher temperatures. This grease has been associated with sporadic problems involving seal swelling.

Aeroshell 22 - Qualities similar to Aeroshell 7.

Royco 22CF - Not widely used. Qualities similar to Aeroshell 22.

NOTE: A label (Refer to Figure 6-3) indicating the type of grease used for previous lubrication is installed on the propeller cylinder. If the propeller must be lubricated with another type of grease, the propeller must be disassembled and cleaned of old grease before relubricating.
3. **Air Charge (-2 Propellers)**

CAUTION: INSTRUCTIONS AND PROCEDURES IN THIS SECTION MAY INVOLVE PROPELLER CRITICAL PARTS. REFER TO THE INTRODUCTION CHAPTER OF THIS MANUAL FOR INFORMATION ABOUT PROPELLER CRITICAL PARTS. REFER TO THE ILLUSTRATED PARTS LIST CHAPTER OF THE APPLICABLE OVERHAUL MANUAL(S) FOR THE IDENTIFICATION OF SPECIFIC PROPELLER CRITICAL PARTS.

A. Charging the Propeller

WARNING: DO NOT CHARGE THE CYLINDER OR MEASURE THE AIR CHARGE ON A PROPELLER THAT IS IN FEATHER POSITION.

(1) Examine the propeller to make sure that it is positioned on the start locks

(2) Using proper control, charge the cylinder with dry air or nitrogen.
 (a) The air charge valve is located on the cylinder as indicated in Figure 6-1.
 (b) Nitrogen is the preferred charging medium.
 (c) The proper charge pressure is identified in Table 6-1 in this chapter.

<table>
<thead>
<tr>
<th>°F</th>
<th>°C</th>
<th>P.S.I.</th>
<th>Bar</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 to 70</td>
<td>38 to 21</td>
<td>41</td>
<td>2.9</td>
</tr>
<tr>
<td>40 to 70</td>
<td>4 to 21</td>
<td>38</td>
<td>2.6</td>
</tr>
<tr>
<td>0 to 40</td>
<td>-18 to 4</td>
<td>36</td>
<td>2.5</td>
</tr>
<tr>
<td>-30 to 0</td>
<td>-34 to -18</td>
<td>33</td>
<td>2.3</td>
</tr>
</tbody>
</table>

Air Charge Pressure

Table 6-1
4. **Composite Blades** (Rev. 1)

 A. Inspection Requirements
 (1) Perform inspections (pre-flight, periodic, lightning strike, etc.) in accordance with the Inspection and Check chapter of this manual.

 B. Damage Evaluation and Repair Limits
 (1) Any defects or damage to a composite blade must be evaluated in accordance with Hartzell Propeller Inc. Composite Propeller Blade Field Maintenance and Minor Repair Manual 170 (61-13-70) to determine if repairs are required before further flight.
 (a) Airworthy damage does not require repair before further flight, but should be repaired as soon as possible to prevent degradation of the damage.
 (b) Unairworthy damage must be repaired before further flight.

 C. Blade Repairs
5. **Blade Paint Touch-up**

CAUTION: INSTRUCTIONS AND PROCEDURES IN THIS SECTION MAY INVOLVE PROPELLER CRITICAL PARTS. REFER TO THE INTRODUCTION CHAPTER OF THIS MANUAL FOR INFORMATION ABOUT PROPELLER CRITICAL PARTS. REFER TO THE ILLUSTRATED PARTS LIST CHAPTER OF THE APPLICABLE OVERHAUL MANUAL(S) FOR THE IDENTIFICATION OF SPECIFIC PROPELLER CRITICAL PARTS.

A. **Important Information**

1. Blade paint touch-up on Hartzell propeller blades may be permitted when performed in accordance with the instructions in this section.

 a. **Composite Blades Only:**
 1. If the area to be painted is less than 10 sq.inches (6451.6 sq. mm), blade paint touch-up is permitted.
 2. If the area to be painted is greater than 10 sq. inches (6451.6 sq. mm), blade paint touch-up is not permitted.

 a. Areas greater than 10 sq. inches (6451.6 sq. mm) require the entire blade to be repainted by a certified propeller repair station with the appropriate rating.
B. Paint

(1) The paints listed in Table 6-2 have been tested by Hartzell Propeller Inc. and are recommended for blade touch-up.

(a) Alternate paints may be used for blade touch-up, but Hartzell Propeller Inc. accepts no responsibility for wear or adhesion-related issues.

(2) Touch-up paint manufacturers contact information:

(a) **Tempo Products Co**
 A plasti-kote Company
 1000 Lake Road
 Medina, OH 44256
 Tel: 800.321.6300
 Fax: 216.349.4241
 Cage Code: 07708

(b) **Sherwin-Williams Company**
 Refer to the Sherwin-Williams Product Finishes Global Finishes Group website at:
 http://oem.sherwin-williams.com
Approved Touch-up Paints

Table 6-2

<table>
<thead>
<tr>
<th>Vendor</th>
<th>Color/Type</th>
<th>Vendor P/N</th>
<th>Hartzell Propeller Inc. P/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tempo</td>
<td>Epoxy Gray</td>
<td>A-151</td>
<td>A-6741-146-2</td>
</tr>
<tr>
<td>Tempo</td>
<td>Epoxy White (tip stripe)</td>
<td>A-152</td>
<td>A-6741-147-2</td>
</tr>
<tr>
<td>Tempo</td>
<td>Epoxy Yellow (tip stripe)</td>
<td>A-154</td>
<td>A-6741-150-2</td>
</tr>
<tr>
<td>Sherwin-Williams</td>
<td>Black</td>
<td>F75KXB9958-4311</td>
<td>A-6741-145-1</td>
</tr>
<tr>
<td>Sherwin-Williams</td>
<td>Gray</td>
<td>F75KXA10445-4311</td>
<td>A-6741-146-1</td>
</tr>
<tr>
<td>Sherwin-Williams</td>
<td>Gray Metallic</td>
<td>F75KXM9754-4311</td>
<td>A-6741-148-1</td>
</tr>
<tr>
<td>Sherwin-Williams</td>
<td>White (tip stripe)</td>
<td>F75KXW10309-4311</td>
<td>A-6741-147-1</td>
</tr>
<tr>
<td>Sherwin-Williams</td>
<td>Red (tip stripe)</td>
<td>F75KXR12320-4311</td>
<td>A-6741-149-1</td>
</tr>
<tr>
<td>Sherwin-Williams</td>
<td>Yellow (tip stripe)</td>
<td>F75KXY11841-4311</td>
<td>A-6741-150-1</td>
</tr>
<tr>
<td>Sherwin-Williams</td>
<td>Silver Metallic</td>
<td>F75KXS13564-4311</td>
<td>A-6741-163-1</td>
</tr>
<tr>
<td>Sherwin-Williams</td>
<td>Silver</td>
<td>F75KXS13564-4311</td>
<td>A-6741-190-1</td>
</tr>
<tr>
<td>Sherwin-Williams</td>
<td>Bright Red</td>
<td>1326305 or F63TXR16285-4311</td>
<td>A-6741-200-5</td>
</tr>
<tr>
<td>Sherwin-Williams</td>
<td>Bright Yellow</td>
<td>1326313 or F63TXY16286-4311</td>
<td>A-6741-201-5</td>
</tr>
<tr>
<td>Sherwin-Williams</td>
<td>Bright Silver</td>
<td>1334259</td>
<td>A-6741-203-5</td>
</tr>
<tr>
<td>Sherwin-Williams</td>
<td>Prop Gold</td>
<td>F63TXS17221-4311</td>
<td>A-6741-204-5</td>
</tr>
</tbody>
</table>
C. Procedure

WARNING: CLEANING AGENTS (ACETONE, #700 LACQUER THINNER, AND MEK), ARE FLAMMABLE AND TOXIC TO THE SKIN, EYES AND RESPIRATORY TRACT. SKIN AND EYE PROTECTION IS REQUIRED. AVOID PROLONGED CONTACT. USE IN WELL VENTILATED AREA.

CAUTION: ANY REFINISHING PROCEDURE CAN ALTER PROPELLER BALANCE. PROPellers THAT ARE OUT OF BALANCE MAY EXPERIENCE EXCESSIVE VIBRATIONS WHILE IN OPERATION.

(1) Using a clean cloth moistened with acetone, #700 lacquer thinner, or MEK, wipe the surface of the blade to remove any contaminants.

(2) Permit the solvent to evaporate.

CAUTION 1: EXCESSIVE SANDING ON COMPOSITE BLADES WILL CAUSE “FUZZING” OF THE KEVLAR® MATERIAL. THIS CAN RESULT IN A ROUGH FINISH AND/OR DAMAGE TO THE BLADE.

CAUTION 2: BE SURE TO SAND/FEATHER THE EXISTING COATINGS TO PREVENT EXCESSIVE PAINT BUILDUP.

(3) Using 120 to 180 grit sandpaper, sand to feather the existing coatings away from the eroded or repaired area.

(a) Erosion damage is typically very similar on all blades in a propeller assembly. If one blade has more extensive damage, e.g. in the tip area, sand all the blades in the tip area to replicate the repair of the most severely damaged blade tip. This practice is essential in maintaining balance after refinishing.

(4) Using acetone, #700 lacquer thinner, or MEK, wipe the surface of the blade.

(5) Permit the solvent to evaporate.
(6) Apply masking material to the erosion shield, anti-icing or de-ice boot, and tip stripes, as needed.

WARNING: FINISH COATINGS ARE FLAMMABLE AND TOXIC TO THE SKIN, EYES AND RESPIRATORY TRACT. SKIN AND EYE PROTECTION ARE REQUIRED. AVOID PROLONGED CONTACT. USE IN A WELL VENTILATED AREA.

CAUTION: APPLY FINISH COATING ONLY TO THE DEGREE REQUIRED TO UNIFORMLY COVER THE REPAIR/EROSION. AVOID EXCESSIVE PAINT BUILDUP ALONG THE TRAILING EDGE TO AVOID CHANGING THE BLADE PROFILE AND/OR P-STATIC CHARACTERISTICS.

(7) Apply a sufficient amount of finish coating to achieve 2 to 4 mil thickness when dry.

(a) Re-coat before 30 minutes, or after 48 hours.

(b) If the paint is permitted to dry longer than four hours, it must be lightly sanded before another coat is applied.

(8) Remove masking material from the tip stripes and re-apply masking material for tip stripe refinishing if required.

(9) Apply sufficient tip stripe coating to achieve 2 to 4 mil thickness when dry.

(a) Re-coat before 30 minutes, or after 48 hours.

(b) If the paint is permitted to dry longer than four hours, it must be lightly sanded before another coat is applied.

(10) Remove the masking material immediately from the anti-icing or de-ice boot and tip stripes, if applicable.

(11) Optionally, perform dynamic balancing in accordance with the procedures and limitations specified in the Dynamic Balance section of this chapter.
D. Optional Removal of Leading Edge Paint for N7605(B,K) and N7605C() Blades

(1) Measure from the tip of the blade as shown in Figure 6-16.

(2) Make a marked line that is 0.25 to 0.50 inch (6.3 to 12.7 mm) from the leading edge along the area as shown in Figure 6-16.

(3) Apply masking material (electrical tape) along the marked line as shown in Figure 6-16.

(4) Using 240 grit or finer sandpaper, remove the paint and primer from the area between the leading edge and the masking material.

(5) Using 400 or finer grit sandpaper, sand the area between the leading edge and the masking material.

(6) Using a medium or fine abrasive pad, for example Scotchbrite®, finish the sanded area.

(7) Remove the masking material from the blade.

WARNING: CLEANING AGENTS (ACETONE, #700 LACQUER THINNER, AND MEK), ARE FLAMMABLE AND TOXIC TO THE SKIN, EYES AND RESPIRATORY TRACT. SKIN AND EYE PROTECTION IS REQUIRED. AVOID PROLONGED CONTACT. USE IN WELL VENTILATED AREA.

(8) Using a clean cloth moistened with acetone, #700 lacquer thinner, or MEK, wipe the blade clean.
6. **Dynamic Balance**

 A. **Overview**

 CAUTION: IF REFLECTIVE TAPE IS USED FOR DYNAMIC BALANCING, REMOVE THE TAPE IMMEDIATELY AFTER BALANCING IS COMPLETED.

 NOTE: Dynamic balance is recommended to reduce vibrations that may be caused by a rotating system (propeller and engine) imbalance. Dynamic balancing can help prolong the life of the propeller, engine, airframe, and avionics.

 (1) Dynamic balance is accomplished by using an accurate means of measuring the amount and location of the dynamic imbalance.

 (2) The number of balance weights installed must not exceed the limits specified in this chapter.

 (3) Follow the dynamic balance equipment manufacturer's instructions for dynamic balance in addition to the specifications in this chapter.

 NOTE: Some engine manufacturers' instructions also contain information about dynamic balance limits.
B. Inspection Procedures Before Balancing

(1) Visually inspect the propeller assembly before dynamic balancing.

NOTE: The first run-up of a new or overhauled propeller assembly may leave a small amount of grease on the blades and inner surface of the spinner dome.

(a) Using Stoddard solvent (or equivalent), completely remove any grease on the blades or inner surface of the spinner dome.

(b) Visually examine each propeller blade assembly for evidence of grease leakage.

(c) Visually examine the inner surface of the spinner dome for evidence of grease leakage.

(2) If there is no evidence of grease leakage, lubricate the propeller in accordance with the Maintenance Practices chapter in this manual. If grease leakage is evident, determine the location of the leak and correct before re-lubricating the propeller.

(3) Before dynamic balancing, record the number and location of all balance weights.

(4) Static balance is accomplished at a propeller overhaul facility when an overhaul or major repair is performed.

NOTE: If static balancing is not accomplished before dynamic balancing, the propeller may be so severely unbalanced that dynamic balance may be unachievable because of measurement equipment limitations.
C. Modifying Spinner Bulkhead to Accommodate Dynamic Balance Weights

CAUTION 1: ALL HOLE/BALANCE WEIGHT LOCATIONS MUST TAKE INTO CONSIDERATION, AND MUST AVOID, ANY POSSIBILITY OF INTERFERING WITH THE ADJACENT AIRFRAME, PROPELLER ICE PROTECTION SYSTEM, AND ENGINE COMPONENTS.

CAUTION 2: DO NOT MODIFY A COMPOSITE SPINNER BULKHEAD TO ACCOMMODATE DYNAMIC BALANCE WEIGHTS.

1. It is recommended that balance weights be placed in a radial location on aluminum spinner bulkheads that have not been previously drilled.

2. The radial location should be outboard of the de-ice slip ring or bulkhead doubler and inboard of the bend where the bulkhead creates the flange surface to attach the spinner dome.

3. Twelve equally spaced locations are recommended for weight attachment.

4. Installing nut plates (10-32 thread) of the type used to attach the spinner dome will permit convenient balance weight attachment on the engine side of the bulkhead.

5. Alternatively, drilling holes for use with the AN3-() type bolts with self-locking nuts is permitted.

6. Chadwick-Helmuth Manual AW-9611-2, “The Smooth Propeller”, specifies several generic bulkhead rework procedures. These are permitted if they comply with the conditions specified herein.
D. Placement of Balance Weights for Dynamic Balance

1. The preferred method of attachment of dynamic balance weights is to add the weights to the spinner bulkhead.

 NOTE: Many spinner bulkheads have factory installed self-locking nut plates provided for this purpose.

2. If the location of static balance weights has not been altered, subsequent removal of the dynamic balance weights will return the propeller to its original static balance condition.

3. Use only stainless or plated steel washers as dynamic balance weights on the spinner bulkhead.

4. A maximum of six AN970 style washers weighing up to approximately 1.0 oz (28.0 g) may be installed at any one location.

 NOTE: The dimensions of an AN970 washer are: ID 0.203 inch (5.16 mm), OD 0.875 inch (22.23 mm), and thickness 0.063 inch (1.59 mm).

5. Install weights using aircraft quality #10-32 or AN-3() type screws or bolts.

6. Balance weight screws attached to the spinner bulkhead must protrude through the self-locking nuts or nut plates a minimum of one thread and a maximum of four threads.

 a. It may be necessary to alter the number and/or location of static balance weights to achieve dynamic balance.

7. Unless otherwise specified by the engine or airframe manufacturer, Hartzell recommends that the propeller be dynamically balanced to a reading of 0.2 IPS, or less.

8. If reflective tape is used for dynamic balancing, remove the tape immediately after balancing is completed.

9. Make a record in the propeller logbook of the number and location of dynamic balance weights, and static balance weights if they have been reconfigured.
7. **Propeller Low Pitch Setting**

WARNING 1: RPM ADJUSTMENTS MUST BE MADE WITH REFERENCE TO A CALIBRATED TACHOMETER. AIRCRAFT MECHANICAL TACHOMETERS DEVELOP ERRORS OVER TIME, AND SHOULD BE PERIODICALLY RECALIBRATED TO MAKE SURE THE PROPER RPM IS DISPLAYED.

WARNING 2: LOW PITCH BLADE ANGLE ADJUSTMENTS MUST BE MADE IN ACCORDANCE WITH THE APPLICABLE TYPE CERTIFICATE OR SUPPLEMENTAL TYPE CERTIFICATE HOLDER’S MAINTENANCE DATA.

A. **Low Pitch Stop - All Propeller Models**

(1) The propeller low pitch stop is set at the factory to the aircraft TC or STC Holder’s requirements and should not require any additional adjustment. The TC or STC Holder provides the required low pitch stop blade angle and may also provide the acceptable RPM range for a maximum power static condition. Be aware that the aircraft TC or STC holder may specify the static RPM to be less than the RPM to which the engine is rated.

(2) An overspeed at the maximum power static condition may indicate that the propeller low-pitch blade angle is set too low and that the governor is improperly adjusted.

(3) An underspeed during the maximum power static condition may be caused by any one or a combination of the following: The propeller low pitch blade angle is too high; the governor is improperly adjusted; the engine is not producing rated power.
Low Pitch Stop Adjustment (-1, -4)
Figure 6-4
B. Max. RPM (Static) Low Pitch Stop Adjustment

WARNING 3: SIGNIFICANT ADJUSTMENT OF THE LOW PITCH STOP TO ACHIEVE THE SPECIFIED STATIC RPM MAY MASK AN ENGINE POWER PROBLEM.

Refer to the following applicable procedure for accomplishing an adjustment to the low pitch angle:

(1) Non-Feathering (-1, -4) Low Pitch Stop Adjustment

(a) Refer to Figure 6-4. While holding the low pitch stop with an allen wrench to prevent the low pitch stop from turning, use a wrench to loosen the jam nut. Turning the low pitch stop **in** will increase blade pitch to reduce RPM, and turning the low pitch stop **out** will lower blade pitch and increase RPM. The low pitch stop has 24 threads per inch.

1. Turning the stop 3/4 of a turn (0.030 inch [0.762 mm] of linear travel) will change the blade pitch by approximately one degree. One degree of blade pitch will change engine RPM by approximately 140-150 RPM.

2. Turning the low pitch stop screw one revolution equals 0.042 inch (1.06 mm) of linear travel, and results in approximately 1.4 degree blade angle change. This blade angle change results in an RPM increase/decrease of approximately 200 RPM.

(b) Carefully remove any sealant from the exposed threads of the low pitch stop.

WARNING: A MINIMUM OF FIVE THREADS IN THE CYLINDER MUST ENGAGE THE LOW PITCH STOP AFTER ADJUSTMENT IS COMPLETED.

(c) When the low pitch stop is adjusted, apply threadlocker CM21 to the threads of the jam nut.

(d) Torque the low pitch stop jam nut in accordance with Torque Table 3-1.

(e) Repeat the Static RPM Check in the Testing and Troubleshooting Chapter of this manual.
Low Pitch Stop Adjustment
For -2 Propellers That Use a Two-piece Spinner Dome
Figure 6-5
(2) Feathering (-2) Low Pitch Stop Adjustment For Propellers That Use a Two-piece Spinner Dome

WARNING: AIR PRESSURE (-2 PROPELLERS) MUST BE REDUCED TO 0 PSI BEFORE ANY LOW PITCH ADJUSTMENT MAY BE MADE.

(a) Refer to Figure 6-5. While holding the low pitch stop with a wrench to prevent the low pitch stop from turning, use a second wrench to loosen the jam nut. Turning the low pitch stop into the cylinder will increase blade pitch and reduce RPM, and turning the low pitch stop out of the cylinder will lower blade pitch and increase RPM. The low pitch stop has 20 threads per inch.

1. Turning the low pitch stop 2/3 of a turn (0.030 inch [0.762 mm] of linear travel) will change the blade pitch by approximately one degree. This blade angle change results in an RPM increase/decrease of approximately 140-150 RPM.

2. Turning the low pitch stop screw one full turn (0.050 inch [1.27 mm] of linear travel) will change the blade pitch approximately 1.7 degree. This blade angle change results in an RPM increase/decrease of approximately 250 RPM.

(b) Carefully remove any sealant from the exposed threads of the low pitch stop.

WARNING: A MINIMUM OF FIVE THREADS IN THE CYLINDER MUST ENGAGE THE LOW PITCH STOP AFTER ADJUSTMENT IS COMPLETED.

(c) When the low pitch stop is adjusted, apply threadlocker CM21 to the threads of the jam nut.

(d) Torque the low pitch stop jam nut in accordance with Torque Table 3-1.

(e) Repeat the Static RPM Check in the Testing and Troubleshooting chapter of this manual.
Low Pitch Stop Adjustment For -2 Propellers That Use a One-piece Spinner Dome

Figure 6-6

One of four threaded holes in the top of the cylinder
(3) Feathering (-2) Low Pitch Stop Adjustment, For Propellers That Use a One-piece Spinner Dome

WARNING: AIR PRESSURE (-2 PROPELLERS) MUST BE REDUCED TO 0 PSI BEFORE ANY LOW PITCH ADJUSTMENT MAY BE MADE.

(a) If a visual examination shows that the hardware configuration is not one hex nut safety wired to a set screw, modify the propeller assembly to the hardware configuration of one hex nut safety wired to a set screw in accordance with the section "Modification of the Low Pitch Stop Hardware" in the Maintenance Practices chapter of this manual.

(b) Refer to Figure 6-6. While holding the low pitch stop with a wrench to prevent the low pitch stop from turning, use a second wrench to loosen the jam nut. Turning the low pitch stop into the cylinder will increase blade pitch and reduce RPM, and turning the low pitch stop out of the cylinder will lower blade pitch and increase RPM. The low pitch stop has 20 threads per inch.

1. Turning the low pitch stop 2/3 of a turn (0.030 inch [0.762 mm] of linear travel) will change the blade pitch by approximately one degree. This blade angle change results in an RPM increase/decrease of approximately 140-150 RPM.

2. Turning the low pitch stop screw one full turn (0.050 inch [1.27 mm] of linear travel) will change the blade pitch approximately 1.7 degree. This blade angle change results in an RPM increase/decrease of approximately 250 RPM.

(c) Using a clean cloth moistened with MEK CM106 or MPK CM219, carefully remove any sealant from the exposed threads of the low pitch stop.
WARNING: A MINIMUM OF FIVE THREADS IN THE CYLINDER MUST ENGAGE THE LOW PITCH STOP AFTER ADJUSTMENT IS COMPLETED.

(d) When the low pitch stop is adjusted, apply threadlocker CM21 to the threads of the jam nut.

(e) Torque the low pitch stop jam nut in accordance with Torque Table 3-1.

(f) Install a B-7589 set screw in one of the four threaded holes in the top of the cylinder. Refer to Figure 6-6.

1 The top of the set screw must be below the surface of the hex nut.

(g) Safety the hex nut and the set screw in accordance with military standard MS33540 using 0.032 inch (0.81 mm) stainless steel safety wire, unless specified differently.

(h) Repeat the Static RPM Check in the Testing and Troubleshooting Chapter of this manual.
Hex Nut Configuration
Figure 6-7

<table>
<thead>
<tr>
<th>Old Part Number</th>
<th>New Part Number</th>
<th>Description</th>
<th>Qty per Assembly</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-2405-2</td>
<td>--</td>
<td>Hex Nut</td>
<td>0</td>
</tr>
<tr>
<td>A-2405-3</td>
<td>--</td>
<td>Hex Nut</td>
<td>0</td>
</tr>
<tr>
<td>A-169-7</td>
<td>--</td>
<td>Spacer</td>
<td>0</td>
</tr>
<tr>
<td>--</td>
<td>A-2405-4</td>
<td>Hex Nut</td>
<td>1</td>
</tr>
<tr>
<td>--</td>
<td>B-7589</td>
<td>Set Screw</td>
<td>1</td>
</tr>
</tbody>
</table>

A-2405-2
Hex Nut
Two safety wire holes

A-2405-3
Hex Nut
No safety wire holes

A-2405-4
Hex Nut
Three safety wire holes
C. Modification of the Low Pitch Stop Hardware

(1) General
(a) The instructions in this section are applicable to -2 and -5 propeller assemblies that use a one piece spinner dome.
(b) This section provides the instructions to change from the configuration of two hex nuts securing the low pitch stop to the new hardware of one hex nut safety wired to a set screw.

(2) Material Requirements
(a) For lock nut identification, refer to Figure 6-7 in this chapter.

NOTE: Only one hex nut is used on low pitch stop for each propeller assembly.

(b) Consumables
CM21 A-6741-21 Loctite 222 Threadlocker
(3) Procedure

CAUTION: WRAP THE BLADE SHANKS IN SEVERAL LAYERS OF MASKING OR DUCT TAPE BEFORE REMOVING THE SPINNER DOME TO PREVENT DAMAGING THE BLADE AND BLADE PAINT.

(a) Remove the screws and washers that secure the spinner dome to the spinner bulkhead.

(b) Remove the spinner dome.

CAUTION: SECURE THE LOW PITCH STOP BEFORE REMOVING THE HEX NUTS.

(c) While holding the low pitch stop with a wrench to prevent the low pitch stop from turning, use a second wrench to remove the jam nuts.

(d) Discard the hex nuts and any spacers from the low pitch stop.

WARNING: DO NOT REMOVE THE LOW PITCH STOP WITHOUT RELIEVING THE AIR PRESSURE.

(e) Using a clean cloth moistened with Methyl-Ethyl-Keytone (MEK) CM106 or Methyl Propyl Ketone (MPK) CM219, carefully remove any sealant from the exposed threads of the low pitch stop.

(f) Apply threadlocker CM21 to the threads of a new A-2405-4 hex nut.

(g) Install the A-2405-4 hex nut on the low pitch stop.

(h) Torque the low pitch stop jam nut in accordance with Torque Table 3-1.

(i) Install B-7589 set screw in one of the four threaded holes in the top of the cylinder.

1. The top of the set screw must be below the surface of the hex nut.
(j) Safety the hex nut and the set screw in accordance with military standard MS33540 using 0.032 inch (0.81 mm) stainless steel safety wire unless specified differently.

(k) Install the spinner dome in accordance with the applicable section in the Installation and Removal chapter of this manual.

(g) Repeat the Static RPM Check in the Testing and Troubleshooting Chapter of this manual.

(h) Make a logbook entry indicating compliance with this section "Modification of the Low Pitch Stop Hardware".
8. **Propeller High Pitch Settings** (Rev. 1)
 A. High Pitch (Min. RPM) Stop Adjustment
 (1) The high pitch stop is set by Hartzell Propeller Inc. in accordance with the aircraft manufacturer’s recommendations.
 (2) The high pitch stop can only be adjusted by Hartzell or by a certified propeller repair station with the appropriate rating.

9. **Feathering Pitch Stop Settings** (Rev. 1)
 A. Feathering Pitch Stop Adjustment
 (1) The feathering pitch stop is set by Hartzell Propeller Inc. in accordance with the aircraft manufacturer’s recommendations.
 (2) The feathering pitch stop can only be adjusted by Hartzell or by a certified propeller repair station with the appropriate rating.

10. **Start Lock Settings** (Rev. 1)
 A. Start Lock Adjustment
 (1) The start locks are set by Hartzell Propeller Inc. in accordance with the aircraft manufacturer’s recommendations.
 (2) The start locks can only be adjusted by Hartzell or by a certified propeller repair station with the appropriate rating.
11. Accumulator Part Number Change

A. General

(1) The HC-C(2,3)YR-1A/7690() propeller with 8907-001 accumulator uses a standard accumulator, part number 8907-001.

(2) This accumulator is charged, per Hartzell’s specifications, to a lower pressure than that specified on the manufacturer’s accumulator label. There is concern that these accumulators may subsequently be used on other installations with an improper air charge.

(3) A new accumulator configuration, part number 8907-040, has been created. The label on this new part number accumulator specifies the reduced air pressure required for the propeller systems affected.

 (a) The 8907-040 configuration is physically identical to the original 8907-001 accumulator.

(4) This procedure changes the part number and labels to reidentify 8907-001 accumulators.
B. Material Information

(1) Material Necessary for Each Propeller/Component

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Keyword</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-7279</td>
<td>Nameplate</td>
<td>1</td>
</tr>
<tr>
<td>A-7281</td>
<td>Drive Lock Stud</td>
<td>2</td>
</tr>
<tr>
<td>B-6507-1</td>
<td>Label</td>
<td>2</td>
</tr>
</tbody>
</table>

C. Accomplishment Instructions

(1) Removal Instructions

(a) Remove the drive lock studs that fasten the original nameplate.

WARNING: THE SERIAL NUMBER MUST BE TRANSFERRED FROM THE ORIGINAL NAMEPLATE TO THE NEW NAMEPLATE TO PROVIDE FUTURE SERIAL NUMBER TRACEABILITY OF THIS COMPONENT.

(b) Using a Vibra Engraving machine or equivalent, transfer the serial number from the original nameplate to the new A-7279 nameplate.

(c) Discard the original nameplate.

(2) Installation Instructions

(a) Using two A-7281 drive lock studs, install the new A-7279 nameplate that shows the transferred serial number.

(b) Install B-6507-1 labels directly over original labels. Refer to Figure 6-8.

1 The B-6507-1 label specifies an air charge of 15-25 psi. Apply the new label directly over the currently installed label to cover the air charge specified on the currently installed label.
<table>
<thead>
<tr>
<th>Blade Model</th>
<th>Erosion Tape Length (per Blade)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N7605(C)()</td>
<td>14.87 inches (377.6 mm)</td>
</tr>
<tr>
<td>N()7893()</td>
<td>13.33 inches (338.5 mm)</td>
</tr>
<tr>
<td>N()8301()-()</td>
<td>13.12 inches (333.2 mm)</td>
</tr>
<tr>
<td>N()8302()-()</td>
<td>13.12 inches (333.2 mm)</td>
</tr>
<tr>
<td>N()8304()-()</td>
<td>13.12 inches (333.2 mm)</td>
</tr>
<tr>
<td>()75A01-2()</td>
<td>14.85 inches (377.1 mm)</td>
</tr>
<tr>
<td>76C03()</td>
<td>14.50 inches (368.3 mm)</td>
</tr>
<tr>
<td>L76A01X()</td>
<td>15.60 inches (396.2 mm)</td>
</tr>
<tr>
<td>N76M05C()X</td>
<td>14.87 inches (377.6 mm)</td>
</tr>
<tr>
<td>H79A06X()</td>
<td>14.87 inches (377.6 mm)</td>
</tr>
<tr>
<td>()79C03()-()</td>
<td>14.50 inches (368.3 mm)</td>
</tr>
</tbody>
</table>

Erosion Tape Length
(Blades without De-ice/Anti-icing Boot Only)
Table 6-3
12. **Erosion Tape Installation** (Rev. 1)

A. **General**

 (1) This section provides instructions to install erosion tape on a composite blade that will **not** have an anti-icing or de-ice boot installed.

 a. For erosion tape installation on a composite blade that **does** have an anti-icing or a de-ice boot installed, refer to Hartzell Propeller Inc. Ice Protection System Manual 180 (30-61-80).

 (2) Erosion tape installation is required for the composite blade models listed in Table 6-3 if the blade will **not** have an anti-icing or de-ice boot installed.

 (a) Erosion tape installation on all other composite blades (without anti-ice or de-ice boot) is optional but highly recommended.

 (3) A minimum temperature of 60°F (10°C) is required for erosion tape CM158 application.

 (4) Keep hands clean at all times.

 (5) Paint must cure for a minimum of eight hours before installing erosion tape.
B. Materials Required

(1) Consumables

NOTE: For additional information about CM numbers or materials refer to the Consumable Materials chapter of Hartzell Propeller Inc. Standard Practices Manual 202A (61-01-02) or contact the Hartzell Propeller Inc. Product Support Department.

(a) Erosion Tape CM158, Hartzell Propeller Inc.
(b) Methyl-Ethyl-Keytone (MEK) CM106, Methyl Propyl Ketone (MPK) CM219, or Acetone CM173
(c) Cheesecloth, Grade 90 CM159, locally procured
(d) Masking Tape, locally procured
(e) 3M Adhesive Promoter 86A,CM124, optional

(2) Tools

NOTE: For additional information about TE numbers or materials in this manual refer to the Hartzell Propeller Inc. Illustrated Tool and Equipment Manual 165 (61-00-65).

(a) Ball Point Pen or Pencil, locally procured
(b) Measuring Tape, locally procured
(c) Rubber Roller TE330 or Silicon Roller TE331

C. Installation Procedure

CAUTION: DO NOT INSTALL EROSION TAPE CM158 ON A BLADE THAT HAS PAINT THAT HAS CURED LESS THAN 8 HOURS.

(1) Preparation

(a) Cut the appropriate length of erosion tape CM158 in accordance with Table 6-3.
(b) Radius the corners of the erosion tape CM158 to 0.5 inch (13 mm) to remove any sharp corners.
(c) Using a pencil or a ball point pen, measure and make a mark on the nonadhesive side of the erosion tape CM158 to indicate the centerline of the erosion tape.
(d) Using a non-graphite pencil CM162 or equivalent, measure and make a mark on the blade 1.00 inch (25.4 mm) outboard of the metal blade shank near the leading edge.

1. This alignment mark on the blade will be used to align the inboard edge of the erosion tape at installation.

WARNING: ADHESIVES AND SOLVENTS ARE FLAMMABLE AND TOXIC TO THE SKIN, EYES, AND RESPIRATORY TRACT. SKIN AND EYE PROTECTION ARE REQUIRED. AVOID PROLONGED CONTACT AND BREATHING OF VAPORS. USE SOLVENT RESISTANT GLOVES TO MINIMIZE SKIN CONTACT AND WEAR SAFETY GLASSES FOR EYE PROTECTION. USE IN A WELL VENTILATED AREA AWAY FROM SPARKS AND FLAME. READ AND OBSERVE ALL WARNING LABELS.

(e) Using a clean cloth dampened with solvent MEK CM106, MPK CM219, or toluene CM41, thoroughly clean the area of the blade where the erosion tape CM158 will be installed.

1. Using a clean, lint-free cloth, immediately wipe the area dry.

2. Permit the area to air dry.

3. Repeat the cleaning and drying of the area.
(2) Application of Optional Adhesive Promoter CM124

NOTE: Adhesive promoter CM124 will increase the adhesion between the erosion tape CM158 and the blade.

(a) Using masking tape or equivalent as masking material, apply the masking material to the perimeter of the area where the erosion tape CM158 will be installed.

(b) Apply a thin, uniform layer of adhesive promoter CM124 to the area of the blade where the erosion tape CM158 will be installed.

(c) Remove the masking material.

CAUTION: THE ADHESIVE PROMOTER CM124 WILL BEGIN TO LOSE ADHESION AFTER 60 MINUTES AT ROOM TEMPERATURE.

(d) Permit the adhesive promoter CM124 to dry at room temperature for a minimum of 15 minutes and a maximum of 60 minutes.

(3) Installation of the Erosion Tape CM158

(a) Peel the backing material from the erosion tape CM158.

(b) Holding the erosion tape CM158 with the adhesive side toward the blade, align the end of the erosion tape with the alignment mark on the blade (outboard of the metal shank and near the leading edge), while aligning the centerline that was marked on the erosion tape with the leading edge of the blade.

(c) Press the erosion tape CM158 into position on the leading edge of the blade while maintaining light tension on the erosion tape to minimize air bubbles and keep the tape straight.

(d) Using a roller, such as TE330 or TE331, or fingers, press the erosion tape CM158 down onto the leading edge of the blade.
(e) Using a roller, such as TE330 or TE331, or fingers, work the erosion tape CM158 into position on one side of the blade.

1. Starting at the outboard end of the blade and working toward the shank, use a hard rubber or nylon roller, such as TE330 or TE331, or fingers to firmly seat the erosion tape CM158 to the blade.

2. Make sure that there are no wrinkles and that no air is trapped under the erosion tape CM158.

CAUTION: DO NOT DAMAGE THE BLADE WHEN REMOVING AIR BUBBLES.

3. Remove air bubbles under the erosion tape by carefully puncturing the erosion tape CM158 with a sharp pin and pressing out the trapped air.

(f) Repeat the procedure on the other side of the blade.

13. **Propeller Ice Protection Systems** (Rev. 1)
 A. Maintenance Information
 (1) Refer to the Anti-ice and De-ice Systems chapter of this manual for ice protection system maintenance information.
14. Tachometer Calibration (Rev. 1)

WARNING: OPERATION WITH AN INACCURATE TACHOMETER CAN CAUSE RESTRICTED RPM OPERATION AND DAMAGING HIGH STRESSES. PROPELLER LIFE WILL BE SHORTENED AND COULD CAUSE CATASTROPHIC FAILURE.

A. Important Information

(1) All engine/propeller combinations have operating conditions at which the propeller blade stresses begin to reach design limits.

(a) In most cases, these conditions occur above the maximum rated RPM of the engine.

(b) Some engine/propeller combinations have certain ranges of RPM that are less than maximum engine speed, where stresses are at a level considered too high for continuous operation. This results in a restricted operating range where continuous operation is not permitted. A placard on the instrument panel or yellow arc on the tachometer will inform the pilot to avoid operation in this range.

(c) In other cases, the limiting condition occurs at an RPM only slightly above the maximum engine RPM.

(d) For these reasons, it is very important to accurately monitor engine speed.

(2) The accuracy of the tachometer is critical to the safe operation of the aircraft.

(a) Some tachometers have been found to be in error by as much as 200 RPM.

(b) Operating the aircraft with an inaccurate tachometer could cause continued operation at unacceptably high stresses, including repeatedly exceeding the maximum engine RPM.

(c) Continuous operation in a restricted RPM range subjects the propeller to stresses that are higher than the design limits.
(d) Stresses that are higher than the design limits will shorten the life of the propeller and could cause a catastrophic failure.

B. Tachometer Calibration

(1) Hartzell Propeller Inc. recommends that propeller owners/operators calibrate the engine tachometer in accordance with the National Institute of Standards and Technology (NIST) or similar national standard (traceable).

(2) Contact Hartzell Propeller Inc. if it is determined that a propeller was operated in a restricted RPM range because of a tachometer error.
(This page is intentionally blank.)
ANTI-ICE AND DE-ICE SYSTEMS - CONTENTS

1. Anti-ice System Description ... 7-3
 A. Overview of an Anti-ice System ... 7-3
 B. Components of an Anti-ice System .. 7-3
 C. Anti-ice System Operation ... 7-4

2. De-ice System Description ... 7-4
 A. Overview of a De-ice System ... 7-4
 B. Components of a De-ice System ... 7-5
 C. De-ice System Operation ... 7-5

3. Operational Checks ... 7-6
 A. De-ice and Anti-ice Systems .. 7-6

4. Troubleshooting ... 7-6
 A. De-ice and Anti-ice Systems .. 7-6

5. Periodic Inspections .. 7-6
 A. De-ice and Anti-ice Systems .. 7-6
1. **Anti-ice System Description** (Rev. 1)

WARNING: CONSULT THE PILOT OPERATING HANDBOOK (INCLUDING ALL SUPPLEMENTS) REGARDING FLIGHT INTO CONDITIONS OF KNOWN ICING. THE AIRCRAFT MAY NOT BE CERTIFICATED FOR FLIGHT INTO KNOWN ICING CONDITIONS, EVEN THOUGH AN ICE PROTECTION SYSTEM IS INSTALLED.

NOTE: There are many configurations of anti-ice systems. This section provides a general overview of system operation. Consult the airframe manufacturer’s manual for a description of your specific anti-ice system and controls.

A. **Overview of an Anti-ice System**

 (1) A propeller anti-ice system prevents formation of ice on the propeller blades. The system dispenses a liquid (usually isopropyl alcohol) onto the propeller blades. This liquid mixes with moisture on the blades and lowers the freezing point of the water, allowing the water/alcohol mixture to flow off of the blades before ice forms.

 (a) Anti-ice systems must be in use before ice forms. This system is not effective for removing ice after it has formed.

B. **Components of an Anti-ice System**

 (1) A typical anti-ice system includes the following components:

 (a) Fluid tank, pump, slinger ring, blade mounted anti-icing boots, and fluid dispensing tube that is found at each blade anti-icing boot.
C. Anti-ice System Operation

(1) The anti-ice system is typically controlled by the pilot using a cockpit mounted rheostat. The rheostat controls the pump and the flow of anti-ice fluid from the fluid tank.

(2) The anti-ice fluid is pumped through airframe mounted distribution tubing and into a rotating slinger ring that is mounted on the rear of the propeller hub.

(3) From the slinger ring, centrifugal force pushes the anti-icing fluid through the fluid dispensing tubes onto the blade mounted anti-icing boots.

(4) The anti-icing boots evenly distribute the fluid along the leading edge of the propeller blade to prevent ice from forming.

2. De-ice System Description (Rev. 1)

WARNING: CONSULT THE PILOT OPERATING HANDBOOK (INCLUDING ALL SUPPLEMENTS) REGARDING FLIGHT INTO CONDITIONS OF KNOWN ICING. THE AIRCRAFT MAY NOT BE CERTIFICATED FOR FLIGHT INTO KNOWN ICING CONDITIONS, EVEN THOUGH AN ICE PROTECTION SYSTEM IS INSTALLED.

NOTE: There are many configurations of de-ice systems. This section provides a general overview of system operation. Consult the airframe manufacturer’s manual for a description of your specific de-ice system and controls.

A. Overview of a De-ice System

(1) A propeller de-ice system removes ice after it forms on the propeller blades. The system uses electrical heating elements to melt the ice layer next to the blade, permitting the ice to be thrown from the blade by centrifugal force.
B. Components of a De-ice System

(1) A typical de-ice system includes the following components:

(a) ON/OFF switch(es), ammeter, timer or cycling unit, slip ring, brush blocks, and blade mounted de-ice boots.

C. De-ice System Operation

(1) The de-ice system is controlled by the pilot using a cockpit control switch. When this switch is ON, electrical power is supplied to the de-ice system.

(a) Some systems may have additional controls to adjust for different icing conditions.

1. A mode selector switch lets the pilot set the cycling speed for heavy or light icing conditions.

2. For twin engine aircraft, a full de-ice mode switch lets the pilot de-ice both propellers simultaneously. This switch is used when ice builds up on the propeller before the system is turned on and may only be used for short periods.

(2) The ammeter indicates current draw by the system. It is typically located near the de-ice system switches. The ammeter may indicate total system load, or in twin engine aircraft, a separate ammeter may be supplied for each propeller.

(3) The timer or cycling unit is controlled by the pilot using a cockpit control switch. When the timer/cycling unit is ON, power is applied to each de-ice boot (or boot segment) in a sequential order for a preset amount of time. This heating interval evenly de-ices the propeller.

(4) The brush block supplies electrical current to the de-ice boot on each propeller blade via a slip ring. The brush block is typically mounted on the engine just aft of the propeller. The slip ring rotates with the propeller and is typically mounted on the spinner bulkhead.

(5) The de-ice boots contain internal heating elements that melt the ice layer from the blades when electrical current is applied. De-ice boots are attached to the leading edge of each blade using adhesive.
3. **Operational Checks** (Rev. 1)
 A. De-ice and Anti-ice Systems
 (1) Perform the applicable Operational Check procedure(s) in accordance with the Check chapter in Hartzell Propeller Inc. Ice Protection System Manual 180 (30-61-80) and/or the Aircraft Maintenance Manual.

4. **Troubleshooting** (Rev. 1)
 A. De-ice and Anti-ice Systems
 (1) Refer to the applicable chapter(s) in Hartzell Propeller Inc. Ice Protection System Manual 180 (30-61-80) to troubleshoot malfunctions in Hartzell de-ice and anti-ice systems.

 (a) Part numbers for components used in Hartzell de-ice and anti-ice systems are found in Hartzell Propeller Inc. Ice Protection System Manual 180 (30-61-80).

5. **Periodic Inspections** (Rev. 1)
 A. De-ice and Anti-ice Systems
 (1) Refer to the Check chapter in Hartzell Propeller Inc. Ice Protection System Manual 180 (30-61-80) for detailed information about inspection intervals and procedures.
RECORDS - CONTENTS

1. Record Keeping .. 8-3
 A. General .. 8-3
 B. Information to be Recorded ... 8-3
 C. Blade Damage Repair Sheets ... 8-3
 () 7690E ... 8-4
 B7421() .. 8-7
 7890() ... 8-10
 () 7690() .. 8-13
 N() 7893() .. 8-17
 N7605() ... 8-20
 N7605C() .. 8-23
 N() 8301() ... 8-27
 N() 8302() ... 8-29
 () 8468() .. 8-31
1. **Record Keeping** (Rev. 1)

 A. General

 (1) Federal Aviation Regulations require that a record be kept of any repairs, adjustments, maintenance, or required inspections performed on a propeller or propeller system.

 B. Information to be Recorded

 (1) Refer to Part 43 of the U.S. Federal Aviation Regulations for a list of information that must be recorded.

 (2) The log book may also be used to record:

 (a) Propeller position (on aircraft)
 (b) Propeller model
 (c) Propeller serial number
 (d) Blade design number
 (e) Blade serial numbers
 (f) Spinner assembly part number
 (g) Propeller pitch range
 (h) Aircraft information (aircraft type, model, serial number and registration number).

 C. Blade Damage Repair Sheets

 NOTE: The use of the Blade Damage Repair Sheets in this chapter is at the discretion of the user.
Record of ()7690E Composite Blade Damage Repair

Blade Serial No. __________

Camber

Face

APS0910

Tip

36

30

24

18

12

8

0 1 Stations
Record of (7690E Composite Blade Damage Repair)

Blade Serial No.

Record of (7690E Composite Blade Damage Repair)
Record of () 7690E Composite Blade Damage Repair

Blade Serial No. __________

Camber
Face

APS0910

36 Tip
30
24
18
12
8
4
0

0 1 Stations