Propeller Owner's Manual
and Logbook

Series: ()(A,B)1
()(A,B)2

Bantam Propellers
with Composite Blades

Hartzell Propeller Inc.
One Propeller Place
Piqua, OH 45356-2634 U.S.A.
Ph: 937-778-4200 (Hartzell Propeller Inc.)
Ph: 937-778-4379 (Product Support)
Product Support Fax: 937-778-4215
As a fellow pilot, I urge you to read this Manual thoroughly. It contains a wealth of information about your new propeller.

The propeller is among the most reliable components of your airplane. It is also among the most critical to flight safety. It therefore deserves the care and maintenance called for in this Manual. Please give it your attention, especially the section dealing with Inspections and Checks.

Thank you for choosing a Hartzell propeller. Properly maintained it will give you many years of reliable service.

Jim Brown
Chairman, Hartzell Propeller Inc.
WARNING (Rev. 1)

People who fly should recognize that various types of risks are involved; and they should take all precautions to minimize them, since they cannot be eliminated entirely. The propeller is a vital component of the aircraft. A mechanical failure of the propeller could cause a forced landing or create vibrations sufficiently severe to damage the aircraft, possibly causing it to become uncontrollable.

Propellers are subject to constant vibration stresses from the engine and airstream, which are added to high bending and centrifugal stresses.

Before a propeller is certified as being safe to operate on an airplane, an adequate margin of safety must be demonstrated. Even though every precaution is taken in the design and manufacture of a propeller, history has revealed rare instances of failures, particularly of the fatigue type.

It is essential that the propeller is properly maintained according to the recommended service procedures and a close watch is exercised to detect impending problems before they become serious. Any grease or oil leakage, loss of air pressure, unusual vibration, or unusual operation should be investigated and repaired, as it could be a warning that something serious is wrong.
For operators of uncertified or experimental aircraft an even greater level of vigilance is required in the maintenance and inspection of the propeller. Experimental installations often use propeller-engine combinations that have not been tested and approved. In these cases, the stress on the propeller and, therefore, its safety margin is unknown. Failure could be as severe as loss of propeller or propeller blades and cause loss of propeller control and/or loss of aircraft control.

Hartzell Propeller Inc. follows FAA regulations for propeller certification on certificated aircraft. Experimental aircraft may operate with unapproved engines or propellers or engine modifications to increase horsepower, such as unapproved crankshaft damper configurations or high compression pistons. These issues affect the vibration output of the engine and the stress levels on the propeller. Significant propeller life reduction and failure are real possibilities.

Frequent inspections are strongly recommended if operating with a non-certificated installation; however, these inspections may not guarantee propeller reliability, as a failing device may be hidden from the view of the inspector. Propeller overhaul is strongly recommended to accomplish periodic internal inspection.

Visually examine composite blades for cracks. Inspect hubs, with particular emphasis on each blade arm for cracks. Eddy current equipment is recommended for hub inspection, since cracks are usually not apparent.
(This page is intentionally blank.)
Revision 8, dated May 2020, incorporates the following:

Front matter (Cover, Revision Highlights, etc.), has been revised to match this revision.

All Hartzell Propeller Inc. de-ice and anti-icing system information is now found in Hartzell Ice Protection System Manual 180 (30-61-80). Revised manual references where applicable.

Minor language/format changes and renumbering, if applicable are marked with a revision bar, but are not listed below.

- **DESCRIPTION AND OPERATION**
 - Added the section, "()A,B)2 Series Constant Speed, Feathering Propellers with Composite Blades"
 - Revised Table 2-2, "Blade Type and Blade Model Designations"
 - Revised the section, "Propeller Model Designation"
 - Added Figure 2-1, "Basic Components of a Composite Blade"
 - Added the section, "Propeller Blades"
 - Revised the section, "Governors"
 - Added Figure 2-5, "Feathering Governor"
 - Added Figure 2-6, "Synchronizer/Synchrophaser Governor"
 - Revised Table 2-3, "Governor Model Designation"
 - Added the section, "Unfeathering Accumulators"
 - Added Figure 2-7, "Governor/Accumulator System"
 - Added the section, "Aerobatic Accumulators"
 - Revised the section, "Propeller Ice Protection Systems"
REVISION 8 HIGHLIGHTS (Continued)

- INSTALLATION AND REMOVAL
 - Revised the section, "Tools, Consumables, and Expendables"
 - Revised the section, "Pre-Installation"
 - Added the section, "Propeller Mounting Hardware and Torque Information"
 - Revised Table 3-2, "Torque Table"
 - Revised Figure 3-1, "Calculating Torque When Using a Torque Wrench Adapter"
 - Revised Figure 3-2, "Torquing Sequence for Propeller Mounting Bolts/Nuts"
 - Revised Table 3-3, "Spinner Support Bracket/Bulkhead Mounting Hardware - Hub Mounted"
 - Added Figure 3-14, "107153 Single Piece Spinner Assembly"
 - Revised the section, "Composite Single Piece Spinner Dome"
 - Added Figure 3-15, "Spinner Assembly Clearance"
 - Added the section, "Spinner Assembly Clearance Checks"
 - Revised the section, "Spinner Removal"

- TESTING AND TROUBLESHOOTING
 - Revised the section, "Operational Checks"
 - Revised the section, "Propeller Ice Protection Systems"
 - Revised the section, "Troubleshooting"

- INSPECTION AND CHECK
 - Revised the section, "Pre-Flight Checks"
 - Revised the section, "Operational Checks"
 - Revised the section, "Required Periodic Inspections and Maintenance"
 - Revised the section, "Inspection Procedures"
 - Revised Figure 5-4, "Blade Movement"
 - Revised the section, "Special Inspections"
 - Revised the section, "Long Term Storage"
REVISION 8 HIGHLIGHTS (Continued)

- **MAINTENANCE PRACTICES**
 - Revised the section, "Cleaning"
 - Added Figure 6-1, "Applying Corrosion Inhibitor CM352"
 - Added the section, "Corrosion Inhibitor"
 - Added the section, "Accumulator Air Charge" and the applicable Figure and Table
 - Revised the section, "Composite Blades"
 - Removed previous Figure 6-1, "Section of Typical Composite Blade"
 - Removed previous Figure 6-2, "Basic Components of a Composite Blade"
 - Removed previous Figure 6-3, "Evidence of Lightning Strike Damage to Composite Blade"
 - Revised the section, "Blade Paint Touch-Up"
 - Revised Table 6-2, "Touch-up Paints"
 - Removed the section, "Painting of a Hartzell Propeller Inc. Composite Spinner Assembly"
 - Added Figure 6-5, "Low Pitch Stop Adjustment () (A,B)2 Series That Use a One-piece Spinner Dome"
 - Revised the section, "Propeller Low Pitch Setting"
 - Revised the section, "Propeller High Pitch Settings"
 - Revised the section, "Erosion Tape on Composite Blades"
 - Removed Table 6-2, "Erosion Tape"
 - Removed Table 6-3, "Erosion Tape Installation Consumables"
 - Removed Table 6-4, "Erosion Tape Installation Tooling"
 - Revised the section, "Propeller Ice Protection Systems"
 - Revised the section, "Tachometer Calibration"

- **ANTI-ICE AND DE-ICE SYSTEMS**
 - Revised the section, "Anti-ice System Description"
 - Revised the section, "De-ice System Description"
 - Revised the section, "Operational Checks"
 - Revised the section, "Troubleshooting"
 - Revised the section, "Periodic Inspections"
REVISION 8 HIGHLIGHTS (Continued)

• RECORDS
 • Removed the section, "Introduction"
 • Revised the section, "Record Keeping"
 • Revised the Blade Damage Repair Sheets for the 75A01-2(), L76A01X(), and H79A06X()"
 • Added Blade Damage Repair Sheets for the C75A01() Composite Blade
1. Introduction
 A. General
 (1) This is a list of current revisions that have been issued against this manual. Please compare it to the RECORD OF REVISIONS page to make sure that all revisions have been added to the manual.

 B. Components
 (1) Revision No. indicates the revisions incorporated in this manual.
 (2) Issue Date is the date of the revision.
 (3) Comments indicate the level of the revision.
 (a) New Issue is a new manual distribution. The manual is distributed in its entirety. All the page revision dates are the same and no change bars are used.
 (b) Reissue is a revision to an existing manual that includes major content and/or major format changes. The manual is distributed in its entirety. All the page revision dates are the same and no change bars are used.
 (c) Major Revision is a revision to an existing manual that includes major content or minor content changes over a large portion of the manual. The manual is distributed in its entirety. All the page revision dates are the same, but change bars are used to indicate the changes incorporated in the latest revision of the manual.
 (d) Minor Revision is a revision to an existing manual that includes minor content changes to the manual. Only the revised pages of the manual are distributed. Each page retains the date and the change bars associated with the last revision to that page.
<table>
<thead>
<tr>
<th>Revision No.</th>
<th>Issue Date</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td>May/12</td>
<td>New Issue</td>
</tr>
<tr>
<td>Revision 1</td>
<td>Oct/12</td>
<td>Minor Revision</td>
</tr>
<tr>
<td>Revision 2</td>
<td>Feb/14</td>
<td>Major Revision</td>
</tr>
<tr>
<td>Revision 3</td>
<td>May/14</td>
<td>Minor Revision</td>
</tr>
<tr>
<td>Revision 4</td>
<td>Aug/14</td>
<td>Minor Revision</td>
</tr>
<tr>
<td>Revision 5</td>
<td>Dec/14</td>
<td>Minor Revision</td>
</tr>
<tr>
<td>Revision 6</td>
<td>Apr/16</td>
<td>Minor Revision</td>
</tr>
<tr>
<td>Revision 7</td>
<td>May/17</td>
<td>Minor Revision</td>
</tr>
<tr>
<td>Revision 8</td>
<td>May/20</td>
<td>Major Revision</td>
</tr>
</tbody>
</table>
RECORD OF REVISIONS

This is a record of revisions inserted into this manual. Revision 8 includes all prior revisions.

<table>
<thead>
<tr>
<th>Rev. No.</th>
<th>Issue Date</th>
<th>Date Inserted</th>
<th>Inserted By</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>May/20</td>
<td>May/20</td>
<td>HPI</td>
</tr>
</tbody>
</table>
RECORD OF REVISIONS

This is a record of revisions inserted into this manual. Revision 8 includes all prior revisions.

<table>
<thead>
<tr>
<th>Rev. No.</th>
<th>Issue Date</th>
<th>Date Inserted</th>
<th>Inserted By</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RECORD OF REVISIONS 61-00-11
Rev. 8 May/20
<table>
<thead>
<tr>
<th>TR No.</th>
<th>Issue Date</th>
<th>Date Inserted</th>
<th>Inserted By</th>
<th>Date Removed</th>
<th>Removed By</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR No.</td>
<td>Issue Date</td>
<td>Date Inserted</td>
<td>Inserted By</td>
<td>Date Removed</td>
<td>Removed By</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
<td>----------------</td>
<td>-------------</td>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
WARNING 1: DO NOT USE OBSOLETE OR OUTDATED INFORMATION. PERFORM ALL INSPECTIONS OR WORK IN ACCORDANCE WITH THE MOST RECENT REVISION OF THE SERVICE DOCUMENT. INFORMATION CONTAINED IN A SERVICE DOCUMENT MAY BE SIGNIFICANTLY CHANGED FROM EARLIER REVISIONS. FAILURE TO COMPLY WITH INFORMATION CONTAINED IN A SERVICE DOCUMENT OR THE USE OF OBSOLETE INFORMATION MAY CREATE AN UNSAFE CONDITION THAT MAY RESULT IN DEATH, SERIOUS BODILY INJURY, AND/OR SUBSTANTIAL PROPERTY DAMAGE.

WARNING 2: THE INFORMATION FOR THE DOCUMENTS LISTED INDICATES THE REVISION LEVEL AND DATE AT THE TIME THAT THE DOCUMENT WAS INITIALLY INCORPORATED INTO THIS MANUAL. INFORMATION CONTAINED IN A SERVICE DOCUMENT MAY BE SIGNIFICANTLY CHANGED FROM EARLIER REVISIONS. REFER TO THE APPLICABLE SERVICE DOCUMENT INDEX FOR THE MOST RECENT REVISION LEVEL OF THE SERVICE DOCUMENT.

<table>
<thead>
<tr>
<th>Service Document Number</th>
<th>Incorporation Rev/Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Letters:</td>
<td></td>
</tr>
<tr>
<td>HC-SL-61-364</td>
<td>Rev. 8, May/20</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Service Document Number</td>
<td>Incorporation Rev/Date</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
AIRWORTHINESS LIMITATIONS

The Airworthiness Limitations section is FAA approved and specifies maintenance required under 14 CFR §§ 43.16 and 91.403 of the Federal Aviation Regulations unless an alternative program has been FAA approved.

FAA APPROVED

by: ______________________________
Manager, Chicago Aircraft Certification Office,
ACE-115C

date: MAR 07 2014

Federal Aviation Administration

<table>
<thead>
<tr>
<th>Rev. No.</th>
<th>Description of Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Added Airworthiness Limitations section to manual.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
AIRWORTHINESS LIMITATIONS

1. Replacement Time (Life Limits)
 A. The FAA establishes specific life limits for certain component parts, as well as the entire propeller. Such limits require replacement of the identified parts after a specified number of hours of use.
 B. The following data summarizes all current information concerning Hartzell Propeller Inc. life limited parts as related to propeller models affected by this manual. These parts are not life limited on other installations; however, time accumulated toward life limit accrues when first operated on aircraft/engine/propeller combinations listed, and continues regardless of subsequent installations (which may or may not be life limited).

(1) The propeller models affected by this manual currently do not have any life limited parts.

FAA APPROVED

by: ______________________________ date: ____________
Manager, Chicago Aircraft Certification Office, ACE-115C
Federal Aviation Administration
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page Description</th>
<th>Revision</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cover and Inside Cover</td>
<td>Cover and Inside Cover</td>
<td>Rev. 8</td>
<td>May/20</td>
</tr>
<tr>
<td>Message</td>
<td>1 thru 4</td>
<td>Rev. 8</td>
<td>May/20</td>
</tr>
<tr>
<td>Revision Highlights</td>
<td>1 thru 6</td>
<td>Rev. 8</td>
<td>May/20</td>
</tr>
<tr>
<td>Record of Revisions</td>
<td>1 and 2</td>
<td>Rev. 8</td>
<td>May/20</td>
</tr>
<tr>
<td>Record of Temporary Revisions</td>
<td>1 and 2</td>
<td>Rev. 8</td>
<td>May/20</td>
</tr>
<tr>
<td>Service Documents List</td>
<td>1 and 2</td>
<td>Rev. 8</td>
<td>May/20</td>
</tr>
<tr>
<td>Airworthiness Limitations</td>
<td>1 and 2</td>
<td>Rev. 8</td>
<td>May/20</td>
</tr>
<tr>
<td>List of Effective Pages</td>
<td>1 and 2</td>
<td>Rev. 8</td>
<td>May/20</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>1 and 2</td>
<td>Rev. 8</td>
<td>May/20</td>
</tr>
<tr>
<td>Introduction</td>
<td>1-1 thru 1-32</td>
<td>Rev. 8</td>
<td>May/20</td>
</tr>
<tr>
<td>Description and Operation</td>
<td>2-1 thru 2-22</td>
<td>Rev. 8</td>
<td>May/20</td>
</tr>
<tr>
<td>Installation and Removal</td>
<td>3-1 thru 3-52</td>
<td>Rev. 8</td>
<td>May/20</td>
</tr>
<tr>
<td>Testing and Troubleshooting</td>
<td>4-1 thru 4-10</td>
<td>Rev. 8</td>
<td>May/20</td>
</tr>
<tr>
<td>Inspection and Check</td>
<td>5-1 thru 5-34</td>
<td>Rev. 8</td>
<td>May/20</td>
</tr>
<tr>
<td>Maintenance Practices</td>
<td>6-1 thru 6-32</td>
<td>Rev. 8</td>
<td>May/20</td>
</tr>
<tr>
<td>Anti-ice and De-ice Systems</td>
<td>7-1 thru 7-6</td>
<td>Rev. 8</td>
<td>May/20</td>
</tr>
<tr>
<td>Records</td>
<td>8-1 thru 8-20</td>
<td>Rev. 8</td>
<td>May/20</td>
</tr>
</tbody>
</table>
(This page is intentionally blank.)
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>MESSAGE</td>
<td>1</td>
</tr>
<tr>
<td>REVISION HIGHLIGHTS</td>
<td>1</td>
</tr>
<tr>
<td>RECORD OF REVISIONS</td>
<td>1</td>
</tr>
<tr>
<td>RECORD OF TEMPORARY REVISIONS</td>
<td>1</td>
</tr>
<tr>
<td>SERVICE DOCUMENTS LIST</td>
<td>1</td>
</tr>
<tr>
<td>AIRWORTHINESS LIMITATIONS</td>
<td>1</td>
</tr>
<tr>
<td>LIST OF EFFECTIVE PAGES</td>
<td>1</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1-1</td>
</tr>
<tr>
<td>DESCRIPTION AND OPERATION</td>
<td>2-1</td>
</tr>
<tr>
<td>INSTALLATION AND REMOVAL</td>
<td>3-1</td>
</tr>
<tr>
<td>TESTING AND TROUBLESHOOTING</td>
<td>4-1</td>
</tr>
<tr>
<td>INSPECTION AND CHECK</td>
<td>5-1</td>
</tr>
<tr>
<td>MAINTENANCE PRACTICES</td>
<td>6-1</td>
</tr>
<tr>
<td>ANTI-ICE AND DE-ICE SYSTEMS</td>
<td>7-1</td>
</tr>
<tr>
<td>RECORDS</td>
<td>8-1</td>
</tr>
</tbody>
</table>
INTRODUCTION - CONTENTS

1. General .. 1-3
 A. Statement of Purpose .. 1-3
 B. Maintenance Practices .. 1-3

2. Airframe or Engine Modifications ... 1-5
 A. Propeller Stress Levels .. 1-5
 B. Engine Modifications ... 1-6

3. Restrictions and Placards ... 1-6
 A. Important Information ... 1-6

4. Reference Publications ... 1-7
 A. Hartzell Propeller Inc. Publications ... 1-7
 B. Vendor Publications .. 1-8

5. Personnel Requirements ... 1-9
 A. Service and Maintenance Procedures in this Manual 1-9

6. Special Tooling and Consumable Materials 1-10
 A. Special Tooling .. 1-10
 B. Consumable Materials .. 1-10

7. Safe Handling of Paints and Chemicals .. 1-10
 A. Instructions for Use .. 1-10

8. Calendar Limits and Long Term Storage .. 1-11
 A. Calendar Limits .. 1-11
 B. Long Term Storage .. 1-11

9. Component Life and Overhaul ... 1-12
 A. Component Life .. 1-12
 B. Overhaul .. 1-14

10. Damage/Repair Types ... 1-15
 A. Airworthy/Unairworthy Damage ... 1-15
 B. Minor/Major Repair .. 1-15

11. Propeller Critical Parts .. 1-16
 A. Propeller Critical Parts ... 1-16
12. Warranty Service... 1-17
 A. Warranty Claims.. 1-17
13. Hartzell Propeller Inc. Contact Information......................... 1-17
 A. Product Support Department... 1-17
 B. Technical Publications Department............................... 1-18
 C. Recommended Facilities... 1-18
14. Definitions... 1-19
15. Abbreviations.. 1-30
1. **General** (Rev. 1)

 A. **Statement of Purpose**

 (1) This manual has been reviewed and accepted by the FAA. Additionally, the Airworthiness Limitations section of this manual has been approved by the FAA.

 CAUTION: KEEP THIS MANUAL WITH THE PROPELLER OR WITH THE AIRCRAFT ON WHICH IT IS INSTALLED, AT ALL TIMES. THE LOGBOOK RECORD WITHIN THIS MANUAL MUST BE MAINTAINED, RETAINED CONCURRENTLY, AND BECOME A PART OF THE AIRCRAFT AND ENGINE SERVICE RECORDS.

 (2) The information in this manual can be used by qualified personnel to install, operate, and maintain the applicable Hartzell propeller assemblies.

 (a) Additional manuals are available that include overhaul procedures and specifications for the propeller.

 (3) This manual may include multiple design types.

 (a) Parentheses shown in the propeller model designations in this or other Hartzell Propeller Inc. publications indicate letter(s) and/or number(s) that may or may not be present because of different configurations permitted on the various aircraft installations.

 1 Refer to the Description and Operation chapter of this manual for propeller and blade model designation information.

 (4) Where possible, this manual is written in the format specified by ATA iSpec 2200.

 B. **Maintenance Practices**

 (1) The propeller and its components are highly vulnerable to damage while they are removed from the engine. Properly protect all components until they are reinstalled on the engine.
(2) Never attempt to move the aircraft by pulling on the propeller.

(3) Avoid the use of blade paddles. If blade paddles must be used, use at least two paddles. Do not put the blade paddle in the area of the de-ice or anti-icing boot when applying torque to a blade assembly. Put the blade paddle in the thickest area of the blade, just outside of the de-ice or anti-icing boot. Use one blade paddle per blade.

(4) Use only the approved consumables, e.g., cleaning agents, lubricants, etc.

(5) Observe applicable torque values during maintenance.

(6) Before installing the propeller on the engine, the propeller must be statically balanced. New propellers are statically balanced at Hartzell Propeller Inc. Overhauled propellers must be statically balanced by a certified propeller repair station with the appropriate rating before return to service.

(a) Dynamic balance is recommended, but may be accomplished at the discretion of the operator, unless specifically required by the airframe or engine manufacturer.

1. Perform dynamic balancing in accordance with the Maintenance Practices chapter of this manual.

2. Additional procedures may be found in the aircraft maintenance manual.

(7) As necessary, use a soft, non-graphite pencil or crayon to make identifying marks on components.

(8) As applicable, follow military standard NASM33540 for safety wire, safety cable, and cotter pin general practices. Use 0.032 inch (0.81 mm) diameter stainless steel safety wire unless otherwise indicated.

(9) The information in this manual revision supersedes data in all previously published revisions of this manual.

(10) The airframe manufacturer’s manuals should be used in addition to the information in this manual due to possible special requirements for specific aircraft applications.
(11) If the propeller is equipped with an ice protection system that uses components supplied by Hartzell Propeller Inc., applicable instructions and technical information for the components can be found in Hartzell Propeller Inc. Ice Protection System Manual 180 (30-61-80).

(12) Propeller ice protection system components not supplied by Hartzell Propeller Inc. are controlled by the applicable TC or STC holder’s Instructions for Continued Airworthiness (ICA).

(13) Approved corrosion protection followed by approved paint must be applied to all aluminum blades.

(a) For information about the application of corrosion protection and paint, refer to the Maintenance Practices chapter of this manual. Operation of blades without the specified coatings and finishes, i.e., “polished blades”, is not permitted.

2. Airframe or Engine Modifications (Rev. 1)

A. Propeller Stress Levels

(1) Propellers are approved vibrationwise on airframe and engine combinations based on tests or analysis of similar installations. This data has demonstrated that propeller stress levels are affected by airframe configuration, airspeed, weight, power, engine configuration, and approved flight maneuvers. Aircraft modifications that can effect propeller stress include, but are not limited to: aerodynamic changes ahead of or behind the propeller, realignment of the thrust axis, increasing or decreasing airspeed limits, increasing or decreasing weight limits (less significant on piston engines), and the addition of approved flight maneuvers (utility and aerobatic).
B. Engine Modifications

(1) Engine modifications can affect the propeller. The two primary categories of engine modifications are those that affect structure and those that affect power. An example of a structural engine modification is the alteration of the crankshaft or damper of a piston engine. Any change to the weight, stiffness, or tuning of rotating components could result in a potentially dangerous resonant condition that is not detectable by the pilot. Most common engine modifications affect the power during some phase of operation. Some modifications increase the maximum power output, while others improve the power available during hot and high operation (flat rating) or at off-peak conditions.

(a) Examples of turbine engine modifications include, but are not limited to: changes to the compressor, power turbine or hot section of a turboprop engine.

(b) Examples of reciprocating engine modifications include, but are not limited to: the addition or alteration of a turbocharger or turbonormalizer, increased compression ratio, increased RPM, altered ignition timing, electronic ignition, full authority digital electronic controls (FADEC), or tuned induction or exhaust.

(2) All such modifications must be reviewed and approved by the propeller manufacturer prior to obtaining approval on the aircraft.

3. Restrictions and Placards (Rev. 1)

A. Important Information

(1) The propellers covered by this manual may have a restricted operating range that requires a cockpit placard.

(a) The restrictions, if present, will vary depending on the propeller, blade, engine, and/or aircraft model.

(b) Review the propeller and aircraft type certificate data sheet (TCDS), Pilot Operating Handbook (POH), and any applicable Airworthiness Directives for specific information.
4. Reference Publications

A. Hartzell Propeller Inc. Publications

1. Information published in Service Bulletins, Service Letters, Service Advisories, and Service Instructions may supersede information published in this manual. The reader must consult active Service Bulletins, Service Letters, Service Advisories, and Service Instructions for information that may have not yet been incorporated into the latest revision of this manual.

2. In addition to this manual, one or more of the following publications are required for information regarding specific recommendations and procedures to maintain propeller assemblies that are included in this manual.

<table>
<thead>
<tr>
<th>Manual No. (ATA No.)</th>
<th>Available at www.hartzellprop.com</th>
<th>Hartzell Propeller Inc. Manual Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/a</td>
<td>Yes</td>
<td>Service Bulletins, Service Letters, Service Instructions, and Service Advisories</td>
</tr>
<tr>
<td>Manual 137 (61-23-37)</td>
<td>Yes</td>
<td>Electrically Actuated Governor Maintenance Manual</td>
</tr>
<tr>
<td>Manual No. (ATA No.)</td>
<td>Available at www.hartzellprop.com</td>
<td>Hartzell Propeller Inc. Manual Title</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------------------------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>Manual 159 (61-02-59)</td>
<td>Yes</td>
<td>Application Guide</td>
</tr>
<tr>
<td>Manual 165A (61-00-65)</td>
<td>Yes</td>
<td>Illustrated Tool and Equipment Manual</td>
</tr>
<tr>
<td>Manual 173 (61-10-73)</td>
<td>Yes</td>
<td>Composite Spinner Field Maintenance and Minor Repair Manual</td>
</tr>
<tr>
<td>Manual 180 (30-61-80)</td>
<td>Yes</td>
<td>Propeller Ice Protection System Manual</td>
</tr>
<tr>
<td>Manual 402 (61-00-02)</td>
<td>-</td>
<td>“Bantam” Models with Composite Blade 3A2 Series Overhaul and Maintenance Manual</td>
</tr>
</tbody>
</table>

B. Vendor Publications
None.
5. **Personnel Requirements** (Rev. 1)

 A. Service and Maintenance Procedures in this Manual

 (1) Personnel performing the service and maintenance procedures in this manual are expected to have the required equipment/tooling, training, and certifications (when required by the applicable Aviation Authority) to accomplish the work in a safe and airworthy manner.

 (2) Compliance to the applicable regulatory requirements established by the Federal Aviation Administration (FAA) or international equivalent is mandatory for anyone performing or accepting responsibility for the inspection and/or repair of any Hartzell Propeller Inc. product.

 (a) Maintenance records must be kept in accordance with the requirements established by the Federal Aviation Administration (FAA) or international equivalent.

 (b) Refer to Federal Aviation Regulation (FAR) Part 43 for additional information about general aviation maintenance requirements.
6. **Special Tooling and Consumable Materials** (Rev. 1)

A. Special Tooling

(1) Special tooling may be required for procedures in this manual. For further tooling information, refer to Hartzell Propeller Inc. Illustrated Tool and Equipment Manual 165A (61-00-65).

(a) Tooling reference numbers appear with the prefix “TE” directly following the tool name to which they apply. For example, a template that is reference number 133 will appear as: template TE133.

B. Consumable Materials

(a) Consumable material reference numbers appear with the prefix “CM” directly following the material to which they apply. For example, an adhesive that is reference number 16 will appear as: adhesive CM16. Only the material(s) specified can be used.

7. **Safe Handling of Paints and Chemicals** (Rev.1)

A. Instructions for Use

(1) Always use caution when handling or being exposed to paints and/or chemicals during propeller overhaul and/or maintenance procedures.

(2) Before using paint or chemicals, always read the manufacturer’s label on the container(s) and follow specified instructions and procedures for storage, preparation, mixing, and/or application.

(3) Refer to the product’s Material Safety Data Sheet (MSDS) for detailed information about the physical properties, health, and physical hazards of any paint or chemical.
8. **Calendar Limits and Long Term Storage** (Rev. 1)

A. **Calendar Limits**

(1) The effects of exposure to the environment over a period of time create a need for propeller overhaul regardless of flight time.

(2) A calendar limit between overhauls is specified in Hartzell Propeller Inc. Service Letter HC-SL-61-61Y and in the propeller owner’s manual.

(3) Experience has shown that special care, such as keeping an aircraft in a hangar, is not sufficient to permit extension of the calendar limit.

(4) The start date for the calendar limit is when the propeller is first installed on an engine.

(5) The calendar limit is not interrupted by subsequent removal and/or storage.

(6) The start date for the calendar limit must not be confused with the warranty start date, that is with certain exceptions, the date of installation by the first retail customer.

B. **Long Term Storage**

(1) Propellers that have been in storage have additional inspection requirements before installation. Refer to the Packaging and Storage chapter of Hartzell Propeller Inc. Standard Practices Manual 202A (61-01-02).
9. **Component Life and Overhaul** (Rev. 1)

WARNING: CERTAIN PROPELLER COMPONENTS USED IN NON-AVIATION APPLICATIONS ARE MARKED WITH DIFFERENT PART NUMBERS TO DISTINGUISH THEM FROM COMPONENTS USED IN AVIATION APPLICATIONS. DO NOT ALTER THE PART NUMBERS SHOWN ON PARTS DESIGNATED FOR NON-AVIATION APPLICATIONS OR OTHERWISE APPLY THOSE PARTS FOR USE ON AVIATION APPLICATIONS.

A. Component Life

(1) Component life is expressed in terms of hours of service (Time Since New, TSN) and in terms of hours of service since overhaul (Time Since Overhaul, TSO).

NOTE: TSN/TSO is considered as the time accumulated between rotation and landing, i.e., flight time.

(2) Time Since New (TSN) and Time Since Overhaul (TSO) records for the propeller hub and blades must be maintained in the propeller logbook.

(3) Both TSN and TSO are necessary for defining the life of the component. Certain components, or in some cases an entire propeller, may be “life limited”, which means that they must be replaced after a specified period of use (TSN).

(a) It is a regulatory requirement that a record of the Time Since New (TSN) be maintained for all life limited parts.

(b) Refer to the Airworthiness Limitations chapter in the applicable Hartzell Propeller Inc. Owner’s Manual for a list of life limited components.

(4) When a component or assembly undergoes an overhaul, the TSO is returned to zero hours.

(a) Time Since New (TSN) can never be returned to zero.

(b) Repair without overhaul does not affect TSO or TSN.
(5) Blades and hubs are sometimes replaced while in service or at overhaul.

(a) Maintaining separate TSN and TSO histories for a replacement hub or blade is required.

(b) Hub replacement

1 If the hub is replaced, the replacement hub serial number must be recorded (the entry signed and dated) in the propeller logbook.

2 The propeller will be identified with the serial number of the replacement hub.

3 The TSN and TSO of the replacement hub must be recorded and maintained in the propeller logbook.

4 If tracking any component(s) other than the hub/blades, maintain these TSN/TSO records separately in the propeller logbook.

NOTE: Hub replacement does not affect the TSN/TSO of any other propeller components.
B. Overhaul

(1) Overhaul is the periodic disassembly, cleaning, inspecting, repairing as necessary, reassembling, and testing in accordance with approved standards and technical data approved by Hartzell Propeller Inc.

(2) The overhaul interval is based on hours of service, i.e., flight time, or on calendar time.

(a) Overhaul intervals are specified in the applicable Hartzell Propeller Inc. propeller owner’s manual and Hartzell Service Letter HC-SL-61-61Y.

(b) At such specified periods, the propeller hub assembly and the blade assemblies must be completely disassembled and inspected for cracks, wear, corrosion, and other unusual or abnormal conditions.

(3) Overhaul must be completed in accordance with the latest revision of the applicable component maintenance manual and other publications applicable to, or referenced in, the component maintenance manual.

(a) Parts that are not replaced at overhaul must be inspected in accordance with the check criteria in the applicable Hartzell Propeller Inc. component maintenance manual.

(b) Parts that must be replaced at overhaul are identified by a “Y” in the O/H column of the Illustrated Parts List in the applicable Hartzell Propeller Inc. component maintenance manual.

(4) The information in this manual supersedes data in all previously published revisions of this manual.
10. **Damage/Repair Types** *(Rev. 1)*

A. Airworthy/Unairworthy Damage

 (1) Airworthy damage is a specific condition to a propeller component that is within the airworthy damage limits specified in the applicable Hartzell Propeller Inc. component maintenance manual.

 (a) Airworthy damage does not affect the safety or flight characteristics of the propeller and conforms to its type design.

 (b) Airworthy damage does not require repair before further flight, but should be repaired as soon as possible to prevent degradation of the damage.

 (2) Unairworthy damage is a specific condition to a propeller component that exceeds the airworthy damage limits specified in the applicable Hartzell Propeller Inc. component maintenance manual.

 (a) Unairworthy damage can affect the safety or flight characteristics of the propeller and does not conform to its type design.

 (b) Unairworthy damage must be repaired before the propeller is returned to service.

B. Minor/Major Repair

 (1) Minor Repair

 (a) Minor repair is that which may be done safely in the field by a certified aircraft mechanic.

 For serviceable limits and repair criteria for Hartzell propeller components, refer to the applicable Hartzell Propeller Inc. component maintenance manual.
(2) Major Repair
 (a) Major repair cannot be done by elementary operations.
 (b) Major repair work must be accepted by an individual that is certified by the Federal Aviation Administration (FAA) or international equivalent.

1. Hartzell recommends that individuals performing major repairs also have a Factory Training Certificate from Hartzell Propeller Inc.

2. The repair station must meet facility, tooling, and personnel requirements and is required to participate in Hartzell Propeller Inc. Sample Programs as defined in the Approved Facilities chapter of Hartzell Propeller Inc. Standard Practices Manual 202A (61-01-02).

11. Propeller Critical Parts (Rev. 1)
 A. Propeller Critical Parts
 (1) Procedures in this manual may involve Propeller Critical Parts (PCP).
 (a) These procedures have been substantiated based on Engineering analysis that expects this product will be operated and maintained using the procedures and inspections provided in the Instructions for Continued Airworthiness (ICA) for this product.
 (b) Refer to the Illustrated Parts List chapter in the applicable Hartzell Propeller Inc. maintenance manual to identify the Propeller Critical Parts.
 (2) Numerous propeller system parts can produce a propeller Major or Hazardous effect, even though those parts may not be considered as Propeller Critical Parts.
 (a) The operating and maintenance procedures and inspections provided in the ICA for this product are, therefore, expected to be accomplished for all propeller system parts.
12. **Warranty Service** (Rev. 1)

 A. Warranty Claims

 (1) If you believe you have a warranty claim, contact the Hartzell Propeller Inc. Product Support Department to request a *Warranty Application* form. Complete this form and return it to Hartzell Product Support for evaluation **before proceeding with repair or inspection work**. Upon receipt of this form, the Hartzell Product Support Department will provide instructions on how to proceed.

 (a) For Hartzell Propeller Inc. Product Support Department contact information, refer to the “Contact Information” section in this chapter.

13. **Hartzell Propeller Inc. Contact Information** (Rev. 2)

 A. Product Support Department

 (1) Contact the Product Support Department of Hartzell Propeller Inc. about any maintenance problems or to request information not included in this publication.

 NOTE: When calling from outside the United States, dial (001) before dialing the telephone numbers below.

 (a) Hartzell Propeller Inc. Product Support may be reached during business hours (8:00 a.m. through 5:00 p.m., United States Eastern Time) at (937) 778-4379 or at (800) 942-7767, toll free from the United States and Canada.

 (b) Hartzell Propeller Inc. Product Support can also be reached by fax at (937) 778-4215, and by e-mail at techsupport@hartzellprop.com.
(c) After business hours, you may leave a message on our 24 hour product support line at (937) 778-4376 or at (800) 942-7767, toll free from the United States and Canada.

1. A technical representative will contact you during normal business hours.

2. Urgent AOG support is also available 24 hours per day, seven days per week via this message service.

(d) Additional information is available on the Hartzell Propeller Inc. website at www.hartzellprop.com.

B. Technical Publications Department

(1) For Hartzell Propeller Inc. service literature and revisions, contact:

Hartzell Propeller Inc.
Attn: Technical Publications Department
One Propeller Place
Piqua, Ohio 45356-2634 U.S.A.

Telephone: 937.778.4200
Fax: 937.778.4215
E-mail: manuals@hartzellprop.com

C. Recommended Facilities

(1) Hartzell Propeller Inc. recommends using Hartzell-approved distributors and repair facilities for the purchase, repair, and overhaul of Hartzell propeller assemblies or components.

(2) Information about the Hartzell Propeller Inc. worldwide network of aftermarket distributors and approved repair facilities is available on the Hartzell website at www.hartzellprop.com.
14. **Definitions** (Rev. 4)

A basic understanding of the following terms will assist in maintaining and operating Hartzell Propeller Inc. propeller systems.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annealed</td>
<td>Softening of material due to overexposure to heat</td>
</tr>
<tr>
<td>Aviation Certified</td>
<td>Intended for FAA or international equivalent type certificated aircraft applications. A TC and PC number must be stamped on the hub, and a PC number must be stamped on blades.</td>
</tr>
<tr>
<td>Aviation Experimental</td>
<td>Intended for aircraft/propeller applications not certified by the FAA or international equivalent. Products marked with an “X” at or near the end of the model number or part number are not certified by the FAA or international equivalent and are not intended to use on certificated aircraft.</td>
</tr>
<tr>
<td>Beta Operation</td>
<td>A mode of pitch control that is directed by the pilot rather than by the propeller governor</td>
</tr>
<tr>
<td>Beta Range</td>
<td>Blade angles between low pitch and maximum reverse blade angle</td>
</tr>
<tr>
<td>Beta System</td>
<td>Parts and/or equipment related to operation (manual control) of propeller blade angle between low pitch blade angle and full reverse blade angle</td>
</tr>
<tr>
<td>Blade Angle</td>
<td>Measurement of blade airfoil location described as the angle between the blade airfoil and the surface described by propeller rotation</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
</tr>
<tr>
<td>Blade Centerline</td>
<td>An imaginary reference line through the length of a blade around which the blade rotates</td>
</tr>
<tr>
<td>Blade Station</td>
<td>Refers to a location on an individual blade for blade inspection purposes. It is a measurement from the blade “zero” station to a location on a blade, used to apply blade specification data in blade overhaul manuals. Note: Do not confuse blade station with reference blade radius; they may not originate at the same location.</td>
</tr>
<tr>
<td>Blemish</td>
<td>An imperfection with visible attributes, but having no impact on safety or utility</td>
</tr>
<tr>
<td>Brinelling</td>
<td>A depression caused by failure of the material in compression</td>
</tr>
<tr>
<td>Bulge</td>
<td>An outward curve or bend</td>
</tr>
<tr>
<td>Camber</td>
<td>The surface of the blade that is directed toward the front of the aircraft. It is the low pressure, or suction, side of the blade. The camber side is convex in shape over the entire length of the blade.</td>
</tr>
<tr>
<td>Chord</td>
<td>A straight line distance between the leading and trailing edges of an airfoil</td>
</tr>
<tr>
<td>Chordwise</td>
<td>A direction that is generally from the leading edge to the trailing edge of an airfoil</td>
</tr>
<tr>
<td>Co-bonded</td>
<td>The act of bonding a composite laminate and simultaneously curing it to some other prepared surface</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Composite Material</td>
<td>Kevlar®, carbon, or fiberglass fibers bound together with, or encapsulated within an epoxy resin</td>
</tr>
<tr>
<td>Compression Rolling</td>
<td>A process that provides improved strength and resistance to fatigue</td>
</tr>
<tr>
<td>Constant Force</td>
<td>A force that is always present in some degree when the propeller is operating</td>
</tr>
<tr>
<td>Constant Speed</td>
<td>A propeller system that employs a governing device to maintain a selected engine RPM</td>
</tr>
<tr>
<td>Corrosion (Aluminum)</td>
<td>The chemical or electrochemical attack by an acid or alkaline that reacts with the protective oxide layer and results in damage of the base aluminum. Part failure can occur from corrosion due to loss of structural aluminum converted to corrosion product, pitting, a rough etched surface finish, and other strength reduction damage caused by corrosion.</td>
</tr>
<tr>
<td>Corrosion (Steel)</td>
<td>Typically, an electrochemical process that requires the simultaneous presence of iron (component of steel), moisture and oxygen. The iron is the reducing agent (gives up electrons) while the oxygen is the oxidizing agent (gains electrons). Iron or an iron alloy such as steel is oxidized in the presence of moisture and oxygen to produce rust. Corrosion is accelerated in the presence of salty water or acid rain. Part failure can occur from corrosion due to loss of structural steel converted to corrosion product, pitting, a rough etched surface finish and other strength reduction damage caused by corrosion.</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>Corrosion Product</td>
<td>A white or dull gray powdery material that has an increased volume appearance (compared to non-corroded aluminum). Corrosion product is not to be confused with damage left in the base aluminum such as pits, worm holes, and etched surface finish.</td>
</tr>
<tr>
<td>(Aluminum)</td>
<td></td>
</tr>
<tr>
<td>Corrosion Product</td>
<td>When iron or an iron alloy such as steel corrode, a corrosion product known as rust is formed. Rust is an iron oxide which is reddish in appearance and occupies approximately six times the volume of the original material. Rust is flakey and crumbly and has no structural integrity. Rust is permeable to air and water, therefore the interior metallic iron (steel) beneath a rust layer continues to corrode. Corrosion product is not to be confused with damage left in the base steel such as pits and etched surface finish.</td>
</tr>
<tr>
<td>(Steel)</td>
<td></td>
</tr>
<tr>
<td>Crack</td>
<td>Irregularly shaped separation within a material, sometimes visible as a narrow opening at the surface</td>
</tr>
<tr>
<td>Debond</td>
<td>Separation of two materials that were originally bonded together in a separate operation</td>
</tr>
<tr>
<td>Defect</td>
<td>An imperfection that affects safety or utility</td>
</tr>
<tr>
<td>Delamination</td>
<td>Internal separation of the layers of composite material</td>
</tr>
<tr>
<td>Dent</td>
<td>The permanent deflection of the cross section that is visible on both sides with no visible change in cross sectional thickness</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
</tr>
<tr>
<td>Depression</td>
<td>Surface area where the material has been compressed but not removed</td>
</tr>
<tr>
<td>Distortion</td>
<td>Alteration of the original shape or size of a component</td>
</tr>
<tr>
<td>Edge Alignment</td>
<td>Distance from the blade centerline to the leading edge of the blade</td>
</tr>
<tr>
<td>Erosion</td>
<td>Gradual wearing away or deterioration due to action of the elements</td>
</tr>
<tr>
<td>Exposure</td>
<td>Leaving material open to action of the elements</td>
</tr>
<tr>
<td>Face</td>
<td>The surface of the blade that is directed toward the rear of the aircraft. The face side is the high pressure, or thrusting, side of the blade. The blade airfoil sections are normally cambered or curved such that the face side of the blade may be flat or even concave in the midblade and tip region.</td>
</tr>
<tr>
<td>Face Alignment</td>
<td>Distance from the blade centerline to the highest point on the face side perpendicular to the chord line</td>
</tr>
<tr>
<td>Feathering</td>
<td>The capability of blades to be rotated parallel to the relative wind, thus reducing aerodynamic drag</td>
</tr>
<tr>
<td>Fraying</td>
<td>A raveling or shredding of material</td>
</tr>
<tr>
<td>Fretting</td>
<td>Damage that develops when relative motion of small displacement takes place between contacting parts, wearing away the surface</td>
</tr>
<tr>
<td>Galling</td>
<td>To fret or wear away by friction</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Gouge</td>
<td>Surface area where material has been removed</td>
</tr>
<tr>
<td>Hazardous Propeller Effect</td>
<td>The hazardous propeller effects are defined in Title 14 CFR section 35.15(g)(1)</td>
</tr>
<tr>
<td>Horizontal Balance</td>
<td>Balance between the blade tip and the center of the hub</td>
</tr>
<tr>
<td>Impact Damage</td>
<td>Damage that occurs when the propeller blade or hub assembly strikes, or is struck by, an object while in flight or on the ground</td>
</tr>
<tr>
<td>Inboard</td>
<td>Toward the butt of the blade</td>
</tr>
<tr>
<td>Intergranular Corrosion</td>
<td>Corrosion that attacks along the grain boundaries of metal alloys</td>
</tr>
<tr>
<td>Jog</td>
<td>A term used to describe movement up/down, left/right, or on/off in short incremental motions</td>
</tr>
<tr>
<td>Laminate</td>
<td>To unite composite material by using a bonding material, usually with pressure and heat</td>
</tr>
<tr>
<td>Lengthwise</td>
<td>A direction that is generally parallel to the pitch axis</td>
</tr>
<tr>
<td>Loose Material</td>
<td>Material that is no longer fixed or fully attached</td>
</tr>
<tr>
<td>Low Pitch</td>
<td>The lowest blade angle attainable by the governor for constant speed operation</td>
</tr>
<tr>
<td>Major Propeller Effect</td>
<td>The major propeller effects are defined in Title 14 CFR section 35.15(g)(2)</td>
</tr>
<tr>
<td>Minor Deformation</td>
<td>Deformed material not associated with a crack or missing material</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Monocoque</td>
<td>A type of construction in which the outer skin carries all or a major part of the load</td>
</tr>
<tr>
<td>Nick</td>
<td>Removal of paint and possibly a small amount of material</td>
</tr>
<tr>
<td>Non-Aviation Certified</td>
<td>Intended for non-aircraft application, such as Hovercraft or Wing in Ground Effect (WIG) applications. These products are certificated by an authority other than FAA. The hub and blades will be stamped with an identification that is different from, but comparable to TC and PC.</td>
</tr>
<tr>
<td>Non-Aviation Experimental</td>
<td>Intended for non-aircraft application, such as Hovercraft or Wing-In-Ground effect (WIG) applications. Products marked with an “X” at or near the end of the model number or part number are not certified by any authority and are not intended for use on certificated craft.</td>
</tr>
<tr>
<td>Onspeed</td>
<td>Condition in which the RPM selected by the pilot through the propeller control/condition lever and the actual engine (propeller) RPM are equal</td>
</tr>
<tr>
<td>Open Circuit</td>
<td>Connection of high or infinite resistance between points in a circuit which are normally lower</td>
</tr>
<tr>
<td>Outboard</td>
<td>Toward the tip of the blade</td>
</tr>
<tr>
<td>Overhaul</td>
<td>The periodic disassembly, inspection, repair, refinish, and reassembly of a propeller assembly to maintain airworthiness</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Overspeed</td>
<td>Condition in which the RPM of the propeller or engine exceeds predetermined maximum limits; the condition in which the engine (propeller) RPM is higher than the RPM selected by the pilot through the propeller control/condition lever</td>
</tr>
<tr>
<td>Pitch</td>
<td>Same as “Blade Angle”</td>
</tr>
<tr>
<td>Pitting</td>
<td>Formation of a number of small, irregularly shaped cavities in surface material caused by corrosion or wear</td>
</tr>
<tr>
<td>Pitting (Linear)</td>
<td>The configuration of the majority of pits forming a pattern in the shape of a line</td>
</tr>
<tr>
<td>Porosity</td>
<td>An aggregation of microvoids. See “voids”</td>
</tr>
<tr>
<td>Propeller Critical Parts</td>
<td>A part on the propeller whose primary failure can result in a hazardous propeller effect, as determined by the safety analysis required by Title 14 CFR section 35.15</td>
</tr>
<tr>
<td>Reference Blade Radius</td>
<td>Refers to the propeller reference blade radius in an assembled propeller, e.g., 30-inch radius. A measurement from the propeller hub centerline to a point on a blade, used for blade angle measurement in an assembled propeller. An adhesive stripe (blade angle reference tape CM160) is usually located at the reference blade radius location. Do not confuse reference blade radius with blade station; they may not originate at the same point.</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>Reversing</td>
<td>The capability of rotating blades to a position to generate reverse thrust to slow the aircraft or back up</td>
</tr>
<tr>
<td>Scratch</td>
<td>Same as “Nick”</td>
</tr>
<tr>
<td>Short Circuit</td>
<td>Connection of low resistance between points on a circuit between which the resistance is normally much greater</td>
</tr>
<tr>
<td>Shot Peening</td>
<td>Process where steel shot is impinged on a surface to create compressive surface stress, that provides improved strength and resistance to fatigue</td>
</tr>
<tr>
<td>Single Acting</td>
<td>Hydraulically actuated propeller that utilizes a single oil supply for pitch control</td>
</tr>
<tr>
<td>Split</td>
<td>Delamination of blade extending to the blade surface, normally found near the trailing edge or tip</td>
</tr>
<tr>
<td>Station Line</td>
<td>See "Blade Station"</td>
</tr>
<tr>
<td>Synchronizing</td>
<td>Adjusting the RPM of all the propellers of a multi-engine aircraft to the same RPM</td>
</tr>
<tr>
<td>Synchrophasing</td>
<td>A form of propeller sychronization in which not only the RPM of the engines (propellers) are held constant, but also the position of the propellers in relation to each other</td>
</tr>
<tr>
<td>Ticking</td>
<td>A series of parallel marks or scratches running circumferentially around the diameter of the blade</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>Track</td>
<td>In an assembled propeller, a measurement of the location of the blade tip with respect to the plane of rotation, used to verify face alignment and to compare blade tip location with respect to the locations of the other blades in the assembly</td>
</tr>
<tr>
<td>Trailing Edge</td>
<td>The aft edge of an airfoil over which the air passes last</td>
</tr>
<tr>
<td>Trimline</td>
<td>Factory terminology referring to where the part was trimmed to length</td>
</tr>
<tr>
<td>Underspeed</td>
<td>The condition in which the actual engine (propeller) RPM is lower than the RPM selected by the pilot through the propeller control/condition lever</td>
</tr>
<tr>
<td>Unidirectional</td>
<td>A composite material in which the fiber are substantially oriented in the same direction</td>
</tr>
<tr>
<td>Material</td>
<td></td>
</tr>
<tr>
<td>Variable Force</td>
<td>A force that may be applied or removed during propeller operation</td>
</tr>
<tr>
<td>Vertical Balance</td>
<td>Balance between the leading and trailing edges of a two-blade propeller with the blades positioned vertically</td>
</tr>
<tr>
<td>Voids</td>
<td>Air or gas that has been trapped and cured into a laminate</td>
</tr>
<tr>
<td>Windmilling</td>
<td>The rotation of an aircraft propeller caused by air flowing through it while the engine is not producing power</td>
</tr>
<tr>
<td>Woven Fabric</td>
<td>A material constructed by interlacing fiber to form a fabric pattern</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Wrinkle (aluminum blade)</td>
<td>A wavy appearance caused by high and low material displacement</td>
</tr>
<tr>
<td>Wrinkle (composite blade)</td>
<td>Overlap or fold within the material</td>
</tr>
</tbody>
</table>
Abbreviations (Rev. 2)

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD</td>
<td>Airworthiness Directives</td>
</tr>
<tr>
<td>AMM</td>
<td>Aircraft Maintenance Manual</td>
</tr>
<tr>
<td>AOG</td>
<td>Aircraft on Ground</td>
</tr>
<tr>
<td>AR</td>
<td>As Required</td>
</tr>
<tr>
<td>ATA</td>
<td>Air Transport Association</td>
</tr>
<tr>
<td>CSU</td>
<td>Constant Speed Unit</td>
</tr>
<tr>
<td>FAA</td>
<td>Federal Aviation Administration</td>
</tr>
<tr>
<td>FH</td>
<td>Flight Hour</td>
</tr>
<tr>
<td>FM</td>
<td>Flight Manual</td>
</tr>
<tr>
<td>FMS</td>
<td>Flight Manual Supplement</td>
</tr>
<tr>
<td>Ft-Lb</td>
<td>Foot-Pound</td>
</tr>
<tr>
<td>HMI</td>
<td>Human Machine Interface</td>
</tr>
<tr>
<td>ICA</td>
<td>Instructions for Continued Airworthiness</td>
</tr>
<tr>
<td>ID</td>
<td>Inside Diameter</td>
</tr>
<tr>
<td>In-Lb</td>
<td>Inch-Pound</td>
</tr>
<tr>
<td>IPL</td>
<td>Illustrated Parts List</td>
</tr>
<tr>
<td>IPS</td>
<td>Inches Per Second</td>
</tr>
<tr>
<td>kPa</td>
<td>Kilopascals</td>
</tr>
<tr>
<td>Lb(s)</td>
<td>Pound(s)</td>
</tr>
<tr>
<td>Max.</td>
<td>Maximum</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Term</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>Min.</td>
<td>Minimum</td>
</tr>
<tr>
<td>MIL-X-XXX</td>
<td>Military Specification</td>
</tr>
<tr>
<td>MPI</td>
<td>Major Periodic Inspection (Overhaul)</td>
</tr>
<tr>
<td>MS</td>
<td>Military Standard</td>
</tr>
<tr>
<td>MSDS</td>
<td>Material Safety Data Sheet</td>
</tr>
<tr>
<td>N</td>
<td>Newtons</td>
</tr>
<tr>
<td>N/A</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>NAS</td>
<td>National Aerospace Standards</td>
</tr>
<tr>
<td>NASM</td>
<td>National Aerospace Standards, Military</td>
</tr>
<tr>
<td>NDT</td>
<td>Nondestructive Testing</td>
</tr>
<tr>
<td>NIST</td>
<td>National Institute of Standards and Technology</td>
</tr>
<tr>
<td>N•m</td>
<td>Newton-Meters</td>
</tr>
<tr>
<td>OD</td>
<td>Outside Diameter</td>
</tr>
<tr>
<td>OPT</td>
<td>Optional</td>
</tr>
<tr>
<td>PC</td>
<td>Production Certificate</td>
</tr>
<tr>
<td>PCP</td>
<td>Propeller Critical Part</td>
</tr>
<tr>
<td>PLC</td>
<td>Programmable Logic Controller</td>
</tr>
<tr>
<td>PMB</td>
<td>Plastic Media Blasting (Cleaning)</td>
</tr>
<tr>
<td>POH</td>
<td>Pilot’s Operating Handbook</td>
</tr>
<tr>
<td>PSI</td>
<td>Pounds per Square Inch</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Term</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>RF</td>
<td>Reference</td>
</tr>
<tr>
<td>RPM</td>
<td>Revolutions per Minute</td>
</tr>
<tr>
<td>SAE</td>
<td>Society of Automotive Engineers</td>
</tr>
<tr>
<td>STC</td>
<td>Supplemental Type Certificate</td>
</tr>
<tr>
<td>TBO</td>
<td>Time Between Overhaul</td>
</tr>
<tr>
<td>TC</td>
<td>Type Certificate</td>
</tr>
<tr>
<td>TSI</td>
<td>Time Since Inspection</td>
</tr>
<tr>
<td>TSN</td>
<td>Time Since New</td>
</tr>
<tr>
<td>TSO</td>
<td>Time Since Overhaul</td>
</tr>
<tr>
<td>UID</td>
<td>Unique Identification</td>
</tr>
<tr>
<td>WIG</td>
<td>Wing-In-Ground-Effect</td>
</tr>
</tbody>
</table>
1. Description of Propeller and Systems ... 2-3
 A. System Overview .. 2-3
 B. () (A,B)1 Series Propellers with Composite Blades 2-5
 C. () (A,B)2 Series Constant Speed, Feathering
 Propellers with Composite Blades ... 2-5
 D. Propeller Model Designation .. 2-10
2. Propeller Blades .. 2-11
 A. Description of Composite Blades .. 2-11
 B. Blade Model Designation ... 2-11
3. Governors .. 2-13
 A. Theory of Operation ... 2-13
 B. Governor Model Designation ... 2-16
4. Unfeathering Accumulators .. 2-17
 A. System Overview ... 2-17
 B. Mechanical Models ... 2-17
 C. Electrical Models ... 2-19
5. Aerobatic Accumulators ... 2-21
 A. System Overview ... 2-21
6. Propeller Ice Protection Systems .. 2-22
 A. System Description .. 2-22
LIST OF ILLUSTRATIONS

Basic Components of a Composite Blade..... Figure 2-1 2-10
Governor in Onspeed Condition Figure 2-2 2-12
Governor in Underspeed Condition Figure 2-3 2-12
Governor in Overspeed Condition Figure 2-4 2-12
Feathering Governor Figure 2-5 2-14
Synchronizer/Synchrophaser Governor Figure 2-6 2-15
Governor/Accumulator System Figure 2-7 2-20

LIST OF TABLES

Propeller Model Designations....................... Table 2-1 2-8
Blade Type and Blade Model Designations... Table 2-2 2-9
Governor Model Designation...................... Table 2-3 2-16
1. **Description of Propeller and Systems**

 A. System Overview

 The propellers covered in this manual are constant speed, single-acting, hydraulically actuated propellers. These propellers are designed for use with reciprocating engines.

 A constant speed propeller system is controlled by an engine/propeller speed sensing device (governor) to maintain a constant engine/propeller RPM by changing the blade angle.

 The governor uses an internal pump that is driven by the engine. This pump increases engine oil pressure for supply to the propeller. Engine speed sensing hardware within the governor controls the supply of oil to the propeller, supplying or draining oil as appropriate to maintain constant engine speed.

 Propeller blade angle change is actuated by a hydraulic piston/cylinder combination mounted on the forward end of the propeller hub. The linear motion of the hydraulic piston is transmitted to each blade through a pitch change rod and a fork. A pitch change knob, located at the base of the blade, connects the blade to the fork. Each blade root is supported in the hub by a retention bearing. The retention bearing system holds the blade firmly in the hub, but also allows the blade angle to change.

 Propeller forces, consisting of: 1) mechanical spring action, 2) counterweight centrifugal twisting moment (if applicable), 3) centrifugal and aerodynamic twisting moment of the blades, and 4) an air charge on some propellers, in various combinations, are constantly present while the propeller is operating. The summation of these forces is opposed by a variable hydraulic force (oil pressure from the engine driven governor). Oil pressure is metered by the governor to oppose these constant forces and maintain a constant engine RPM.
Oil under pressure from the engine-driven governor is supplied to the hydraulic cylinder through the pitch change rod. Increasing or decreasing the oil volume within the hydraulic cylinder either increases blade angle to reduce engine RPM, or reduces blade angle to increase engine RPM. By changing the blade angle, the governor maintains constant engine RPM (within limits), independent of the throttle setting.

If oil pressure is lost at any time, the summation of propeller forces, which is in direct opposition to the lost variable hydraulic force, either increases or reduces blade angle, depending upon the propeller model.
B. (A,B)1 Series Propellers with Composite Blades

These propeller model series are constant speed, non-counterweighted propellers. The propellers are capable of blade angles between a low positive pitch (low pitch) and high positive pitch (high pitch).

Centrifugal twisting moment acting on the blades moves the blades to a low blade angle (low pitch) to increase RPM. Since the centrifugal twisting moment is only present when the propeller is rotating, a mechanical spring is installed within the propeller to assist movement of the blades to a lower pitch position as RPM declines, and to reduce the propeller pitch to the low pitch stop when the propeller is static. With the blades at low pitch, the load on the starter when starting the engine is reduced significantly.

Oil pressure opposes the spring and centrifugal twisting moment to move the blades to a high blade angle (high pitch), reducing engine RPM.

If oil pressure is lost at any time, the propeller will move to low pitch. This occurs because the spring and blade centrifugal twisting moment are no longer opposed by hydraulic oil pressure. The propeller will then reduce blade pitch to the low pitch stop.

C. (A,B)2 Series Constant Speed, Feathering Propellers with Composite Blades

The -2 Series propellers are constant speed propellers that use a spring and counterweights (if installed) to move the blades to high pitch/feather position. Blade centrifugal twisting moment acts to move the blades to low pitch, but the spring and counterweights overcome this force. Oil pressure against a propeller mounted hydraulic piston opposes the counterweight and spring forces to move the blades to low blade angle (low pitch).

The action of the spring and counterweights tend to move the blades to a higher blade angle (high pitch), reducing engine RPM. Oil pressure toward low pitch increases engine RPM.
If oil pressure is lost during operation, the propeller will feather. Feathering occurs because the spring and blade counterweights are no longer opposed by hydraulic oil pressure. The spring and blade counterweights are then free to increase blade pitch to the feathering (high pitch) stop.

Normal in-flight feathering of these propellers is accomplished when the pilot retards the propeller pitch control past the feather detent. This allows control oil to drain from the cylinder and return to the engine sump. The engine can then be shut down.

Normal in-flight unfeathering is accomplished when the pilot positions the propeller pitch control into the normal flight (governing) range and an engine restart is attempted.

Some aircraft are equipped with a hydraulic accumulator, which stores a supply of oil under pressure. This oil supply is released to unfeather the propeller during an in-flight engine restart. Pressurized oil is directed to the propeller, resulting in blade angle decrease. The propeller begins to windmill, and engine restart is possible.

When the engine is stopped on the ground, it is undesirable to feather the propeller, as the high blade angle prevents the engine from starting. To prevent feathering during normal engine shutdown on the ground, the propeller incorporates spring energized latches. If propeller rotation is approximately 1200 RPM or above, the latches are disengaged by centrifugal force acting on the latches to compress the springs. When RPM drops below 1200 RPM (and blade angle is typically within seven degrees of the low pitch stop), the springs overcome the latch weight centrifugal force and move the latches to engage the high pitch stops, preventing blade angle movement to feather during normal engine shutdown.
Propeller Model Designations

Table 2-1

One or more character alphanumeric hub descriptor (first character must be alpha)
L - left hand rotation
X - Experimental
X() - X with numeric character indicates minor change not affecting eligibility
Any alpha character not listed here denotes a minor change not affecting eligibility
Numeric character indicates minor configuration change not affecting eligibility

Extension
Distance in inches between flange and blade centerline (implied decimal after first digit) Example: 724=7.24 inches

Mounting flange
First character is mounting flange type (F,G,H,Q,T)
Second character, when used (e.g., B,P), indicates flange index with respect to blade centerline

<table>
<thead>
<tr>
<th>Bolt Circle - inches</th>
<th>Dowels No.</th>
<th>Dia. (inches)</th>
<th>No. of bolts or studs</th>
<th>Typical Engine</th>
</tr>
</thead>
<tbody>
<tr>
<td>F 4.000</td>
<td>2</td>
<td>1/2</td>
<td>6 (1/2")</td>
<td>Continental</td>
</tr>
<tr>
<td>G 4.000</td>
<td></td>
<td></td>
<td>6 (M8 X 1.25)</td>
<td>Rotax</td>
</tr>
<tr>
<td>H 4.000</td>
<td></td>
<td></td>
<td>6 (1/2")</td>
<td>Rotax</td>
</tr>
<tr>
<td>Q 3.150</td>
<td></td>
<td></td>
<td>6 (1/2")</td>
<td>Lycoming</td>
</tr>
<tr>
<td>T 3.150</td>
<td></td>
<td></td>
<td>6 (7/16")</td>
<td>Technifly (Thielert)</td>
</tr>
</tbody>
</table>

Operating Mode
1 - Constant speed, oil to increase pitch and no blade counterweights
2 - Constant speed, feathering, oil pressure to low pitch, spring, and counterweights
7 - Constant speed reversing (pressure control)

Preload Type
Basic hub series (A, B)

Number of blades
Blade Type and Blade Model Designations

Table 2-2

<table>
<thead>
<tr>
<th>H</th>
<th>75</th>
<th>A</th>
<th>06</th>
<th>B</th>
<th>2</th>
<th>X()</th>
</tr>
</thead>
</table>

NOTE: Parentheses in the model designation system indicates that an option or modification may or may not be included in the blade assembly.

<table>
<thead>
<tr>
<th>Blank or more characters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blank - Original design, no changes</td>
</tr>
<tr>
<td>X - experimental</td>
</tr>
<tr>
<td>X() - X with numeric character indicates minor change not affecting eligibility</td>
</tr>
<tr>
<td>Any alpha character not listed here denotes a minor change not affecting eligibility</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Blank - Basic diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number when used indicates the difference in inches from (or added to if +) basic diameter</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B or K - De-ice or anti-ice boots</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Basic blade model (two character numeric)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Basic diameter in inches</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Denotes blade configuration:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blank - Right-hand tractor</td>
</tr>
<tr>
<td>C - Counterweighted</td>
</tr>
<tr>
<td>H - Right-hand pusher</td>
</tr>
<tr>
<td>J - Left-hand tractor</td>
</tr>
<tr>
<td>L - Left-hand pusher</td>
</tr>
</tbody>
</table>

Blade Type and Blade Model Designations
D. Propeller Model Designation

(1) Hartzell Propeller Inc. uses a model number designation system to identify specific propeller and blade assemblies. The propeller model number and blade model number are separated by a slash (/).

(a) Example: propeller model number / blade model number

(2) The propeller model number is impression stamped on the propeller hub.

(3) Refer to Table 2-1 for a description of the characters used in the propeller model number.

Basic Components of a Composite Blade

Figure 2-1

- Composite Material
- Erosion Shield
- Shank of Metal Blade Plug
- Trailing Edge Foam
- Foam Core
2. **Propeller Blades**

 A. **Description of Composite Blades - Refer to Figure 2-1**

 (1) Hartzell Propeller Inc. composite blades are constructed by layering composite material over a foam core and a metal blade shank.

 (2) A metal erosion shield is bonded to the leading edge of the blade to provide protection from impact and erosion.

 (3) Composite blades are identified by direction of rotation, shank design, propeller diameter, and other blade characteristics.

 (a) Refer to the section, "Blade Model Designation" in this chapter.

 B. **Blade Model Designation**

 (1) Hartzell Propeller Inc. uses a model number designation system to identify specific propeller and blade assemblies. The propeller model number and blade model number are separated by a slash (/).

 (a) Example: *propeller model number / blade model number*

 (2) The blade model number is impression stamped on the butt end of the blade, and also identified by a label on the cylinder.

 (3) Refer to Table 2-2 for a description of the characters used in the blade model number:
Governor in Onspeed Condition
Figure 2-2

Governor in Underspeed Condition
Figure 2-3

Governor in Overspeed Condition
Figure 2-4
3. **Governors** (Rev. 1)

 A. Theory of Operation

 (1) A governor is an engine RPM sensing device and high pressure oil pump. In a constant speed propeller system, the governor responds to a change in engine RPM by directing oil under pressure to the propeller hydraulic cylinder or by releasing oil from the hydraulic cylinder. The change in oil volume in the hydraulic cylinder changes the blade angle and maintains the propeller system RPM to the set value. The governor is set for a specific RPM via the cockpit propeller control, that compresses or releases the governor speeder spring.

 (2) When the engine is operating at the RPM set by the pilot using the cockpit control, the governor is operating **onspeed**. Refer to Figure 2-2. In an onspeed condition, the centrifugal force acting on the flyweights is balanced by the speeder spring, and the pilot valve is neither directing oil to nor from the propeller hydraulic cylinder.

 (3) When the engine is operating below the RPM set by the pilot using the cockpit control, the governor is operating **underspeed**. Refer to Figure 2-3. In an underspeed condition, the flyweights tilt inward because there is not enough centrifugal force on the flyweights to overcome the force of the speeder spring. The pilot valve, forced down by the speeder spring, meters oil flow to decrease propeller pitch and raise engine RPM.

 (4) When the engine is operating above the RPM set by the pilot using the cockpit control, the governor is operating **overspeed**. Refer to Figure 2-4. In an overspeed condition, the centrifugal force acting on the flyweights is greater than the speeder spring force. The flyweights tilt outward, and raise the pilot valve. The pilot valve then meters oil flow to increase propeller pitch and lower engine RPM.
(5) Feathering governors allow oil to be pushed from the propeller to the engine drain to increase propeller pitch to feather.

(a) Some governors will move the propeller to feather by electrically or mechanically actuating a valve that opens to drain the oil supply between the propeller and governor to increase propeller pitch and allow the propeller to feather.

(b) Figure 2-5 illustrates another feathering propeller governor system. When it is desired to feather the propeller, the lift rod may be moved by the cockpit control to mechanically engage the valve. The lifted valve dumps oil to increase propeller pitch until the propeller feathers.
(6) A synchronizing system can be employed in a multi-engine aircraft to keep the engines operating at the same RPM. A synchrophasing system not only keeps the RPM of the engines consistent, but also keeps the propeller blades in phase with each other. Both synchronizing and synchrophasing systems serve to reduce noise and vibration. Figure 2-6 illustrates a governor as a component of a synchronizing or synchrophasing system.

(a) Hartzell Propeller Inc. synchronizing or synchrophasing systems use one engine (the master engine) as an RPM and phase reference and adjust the RPM of the remaining engine(s) [slave engine(s)] to match it. The RPM of the master engine is monitored electronically, and this information is used to adjust the voltage applied to the electrical coil on the slave governor(s). The voltage to the coil either raises or lowers a rod which changes the force of the speeder spring. In this manner, engine RPM and phase of the propellers is synchronized or synchrophased.
B. Governor Model Designation

(1) Hartzell Propeller Inc. uses a model number designation system to identify specific governor models.

(2) The governor model number is stamped on the base and/or body of the governor assembly.

(3) Refer to Table 2-3 for a description of the characters used in the governor model number.

Governor Model Designation

Table 2-3

<table>
<thead>
<tr>
<th>S</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
</table>

- **Minor Variation of Basic Design** (numeric or alpha character) indicating variations of: RPM setting, head orientation, relief setting, rotation, lever angle, and/or minor part changes
- **Specific Model Application** (numeric character) 1 through 11
- **Basic Body and Major Parts** (alpha character)
 - A, B, C, D, E, F, H, S, U, V - Mechanically Actuated Governors
 - L - Electrically Actuated Governors
4. **Unfeathering Accumulators** (Rev. 2)

A. System Overview

(1) An unfeathering accumulator is a device that stores a volume of oil at a pressure and supplies it to the propeller when commanded to. This supplied pressure will lower blade angle which will cause the propeller to windmill and make the engine easier to start.

(2) Hartzell Propeller Inc. manufactures an accumulator that is a cylinder with a moveable internal piston. One end of the cylinder and piston is filled with engine oil, and the other end of the cylinder and piston is filled with air or nitrogen to a designated pressure through an air valve. The accumulator is a self-contained unit and is usually installed at some remote location in the engine compartment. An oil supply hose is connected between the accumulator and the governor.

(3) Hartzell Propeller Inc. manufactures governors that have unfeathering and feathering capability; although some governors are able to feather a propeller they are not automatically capable of unfeathering the propeller.

B. Mechanical Models

(1) The governor has a fitting or threaded hole to attach with an oil supply hose that is connected to the accumulator on the other end. During operation of the engine and propeller, the governor supplies oil to the accumulator and maintains oil in the accumulator during engine operation.

(2) The pilot commands feather of the propeller by moving the RPM control of the governor toward lower RPM to reach the feather command location. The governor disconnects the oil supply to the accumulator and seals a volume of oil under pressure in the accumulator. The governor then connects the oil supply line from the propeller piston and permits the propeller blades to move to a feather stop in the propeller.
(3) Unfeathering occurs when the governor RPM control is moved by the pilot from the feather location to a higher RPM selection for governing. The governor disconnects the propeller oil supply from the drain and reconnects it to the governor oil supply line from the governor. At that point there is no oil available from the engine oil pump to the governor; therefore, no governed oil is available from the governor for controlling the propeller blade angle and RPM. Further movement of the governor RPM control toward higher RPM will cause the governor to connect the accumulator to the oil supply line from governor to the propeller. The air or nitrogen pressure in one side of the accumulator will push a piston to force oil from the other side of the accumulator through the governor to the propeller piston to move the propeller blades from feather to a lower blade angle. The propeller will then begin to windmill and will permit the engine to start.
C. Electrical Models

(1) In an electrical model a switch activates a solenoid coil allowing oil to reverse out of a valve resulting in a lower blade angle for the purpose of starting the associated engine.

(2) The governor has a fitting or threaded hole to attach with an oil supply hose that is connected on the other side to the accumulator solenoid valve that is connected to the oil side of the accumulator. During operation of the engine and propeller, the governor supplies oil to the accumulator through the solenoid valve’s check valve until equal pressure is reached allowing the check valve to then close and maintain oil pressure at engine shutdown.

(3) When the engine has shut down or failed, no oil is available from the engine oil pump to the governor; therefore, no governed oil is available from the governor for controlling the propeller blade angle and RPM. Unfeathering occurs when a switch is activated energizing the coil on the accumulator solenoid valve. The activated coil changes the valve from a one-way valve to an open passage allowing reverse flow back out of the accumulator and to the governor. The air or nitrogen pressure in one side of the accumulator will push a piston to force oil from the other side of the accumulator through the governor to the propeller piston to move the propeller blades from feather to a lower blade angle. The propeller will then begin to windmill and permit the engine to start.
Governor/Accumulator System

Figure 2-7

Governor

Governor Adapter

Check Valve

Engine Oil Supply

Accumulator

Oil

Air

Drain

Propeller Control Oil

APS6293
5. **Aerobatic Accumulators** (Rev. 1)

CAUTION: THE EFFECTIVENESS OF THE ACCUMULATOR SYSTEM CANNOT BE ACCURATELY SPECIFIED DUE TO VARIABLES IN THE ENGINE AND GOVERNOR INTERNAL LEAKAGE RATES, AS WELL AS THE EXTENT AND DURATION OF OIL STARVATION. THE SYSTEM CANNOT ENSURE 100 PERCENT PROTECTION FROM OVERSPEED IN ALL OPERATING CONDITIONS.

A. System Overview - Refer to Figure 2-7

1. The fundamental purpose of the accumulator is to supply oil to the governor during brief circumstances of engine oil starvation, not prolonged periods of this condition. The accumulator’s oil supply helps to avoid loss of propeller control and overspeed.

2. The accumulator has a one (1) quart capacity for the oil and the volume required for an air charge. A piston or diaphragm separates the oil and air.

3. When the engine is operating, the engine oil system supplies oil to the input side of the governor gear pump. The oil supply also charges the accumulator at any time the engine oil system is developing a pressure greater than the accumulator air charge pressure. The accumulator is filled with oil until the air charge pressure of the compressed air volume is equal to the engine oil pressure.

4. In the event that the engine oil pressure drops below the accumulator air pressure, the oil in the accumulator is discharged to supply the governor gear pump. A check valve in an adapter located between the engine and governor will prevent the accumulator from discharging oil into the engine. The loss of propeller control and overspeed are avoided while an oil supply to the governor is maintained.
6. **Propeller Ice Protection Systems** (Rev. 1)
 A. System Description
 (1) For detailed descriptions of propeller ice protection systems, refer to the Anti-ice and De-ice Systems chapter in this manual.
INSTALLATION AND REMOVAL - CONTENTS

1. Tools, Consumables, and Expendables .. 3-5
 A. General .. 3-5
 B. Propeller Flange Tooling .. 3-5
 C. Consumables ... 3-6
 D. Expendables .. 3-6

2. Pre-Installation ... 3-6
 A. Inspection of Shipping Package .. 3-6
 B. Uncrating ... 3-7
 C. Inspection after Shipment .. 3-7
 D. Reassembly of a Propeller Disassembled for Shipment ... 3-7

3. Propeller Mounting Hardware and Torque Information 3-8
 A. Propeller Mounting Hardware .. 3-8
 B. Torque Information ... 3-8

4. Painting of a Hartzell Propeller Inc. Composite Spinner Assembly .. 3-16
 A. General .. 3-16

5. Bulkhead Installation ... 3-21
 A. General .. 3-21
 B. Spinner Mounting Ring to Bulkhead Installation 3-21
 C. Spinner Bracket/Bulkhead Installation - Hub Mounted 3-22

6. Propeller Installation ... 3-26
 A. Flange Description ... 3-26
 B. Installation of F, H, Q, and T Flange Propellers 3-26
 C. Installation of G and R Flange Propellers 3-28

7. Spinner Installation ... 3-31
 A. General .. 3-31
 B. Aluminum Single Piece Spinner Dome except 105539()3-33
 C. Composite Spinner Assembly P/N 105539() 3-36
 D. Composite Single Piece Spinner Dome 3-42
8. Spinner Assembly Clearance Checks ...3-47
 A. Clearance Checks ..3-47
9. Post-Installation Checks ...3-47
10. Spinner Removal ...3-48
 A. Removal of a Spinner Assembly not from Hartzell Propeller Inc.3-48
 B. Removal of Hartzell Propeller Inc. Single Piece Spinner ..3-48
11. Propeller Removal ...3-49
 A. Removal of F, H, Q, and T Flange Propellers3-49
 B. Removal of G and R Flange Propellers3-50
LIST OF FIGURES

Calculating Torque When Using a Torque Wrench Adapter Figure 3-13-10

Torquing Sequence for Propeller Mounting Bolts/Nuts ... Figure 3-23-11

2 Blade Hub Clamping Bolt Location Figure 3-33-12

3 Blade Hub Clamping Bolt Location Figure 3-43-13

5 Blade Hub Clamping Bolt Location Figure 3-53-14

Bulkhead and Spinner Mounting (Hub Mounting Spinner) ... Figure 3-63-15

Spinner Mounting Ring Attachment to Hub and Bulkhead ... Figure 3-73-20

F, H, Q, and T Flange Propeller Mounting Figure 3-83-24

G and R Flange Propeller Mounting Figure 3-93-25

Installation of 104888() and 105539 Spinner Assemblies ... Figure 3-10............3-34

Spinner Dome to Bulkhead Mounting Hole Alignment ... Figure 3-11............3-35

104529 Single Piece Spinner Assembly Figure 3-123-38

105085() Spinner Assembly Installation Figure 3-133-39

107153 Single Piece Spinner Assembly Figure 3-143-40

Spinner Assembly Clearance Figure 3-153-46
LIST OF TABLES

Propeller/Engine Flange O-rings and Mounting Hardware Table 3-1 3-8

Torque Table ... Table 3-2 3-9

Spinner Support Bracket/Bulkhead Mounting Hardware - Hub Mounted Table 3-3 3-18

Serial Numbers Affected by Indexing Requirement .. Table 3-4 3-32
1. **Tools, Consumables, and Expendables**

 CAUTION: INSTRUCTIONS AND PROCEDURES IN THIS CHAPTER MAY INVOLVE CRITICAL PARTS. REFER TO THE INTRODUCTION CHAPTER OF THIS MANUAL FOR INFORMATION ABOUT PROPELLER CRITICAL PARTS. CONTACT HARTZELL PROPELLER INC. FOR THE IDENTIFICATION OF SPECIFIC PROPELLER CRITICAL PARTS.

 A. **General**

 (1) The following tools, consumables, and expendables will be required for propeller removal or installation:

 NOTE: Hartzell Propeller Inc. propellers with composite blades are manufactured with basic hub mounting flange designs. The flange type used on a particular propeller installation is indicated in the propeller model number stamped on the hub. For example, 3A1-TP724A1 indicates an T flange. Refer to Table 2-1, Propeller Model Designations in the Description and Operation chapter of this manual for a description of each flange.

 B. **Propeller Flange Tooling**

Tooling	Propeller Flange
(1) Safety wire pliers	F, G, H, Q, and R
(Alternate: Safety cable tool)	
(2) Torque wrench (1/2 inch drive)	F, G, H, Q, and R
(3) Torque wrench adapter	F, G, H, Q, and R
(Hartzell Propeller Inc. Part Number BST-2860)	
(4) 3/4 inch open end wrench for installation	F, H, Q, and R
(5) 5/8 inch open end wrench for installation	T
(6) 1/2 inch open end wrench for installation	G
(7) 5/32 inch socket for oil level screw	
C. Consumables

<table>
<thead>
<tr>
<th>Hartzell Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-6741-41(-1)</td>
<td>Toluene</td>
</tr>
<tr>
<td>N/A</td>
<td>Stoddard Solvent</td>
</tr>
<tr>
<td>N/A</td>
<td>Methyl Propyl Ketone (MPK)</td>
</tr>
<tr>
<td>N/A</td>
<td>Contax HP, 9093</td>
</tr>
<tr>
<td>N/A</td>
<td>Denatured alcohol</td>
</tr>
<tr>
<td>N/A</td>
<td>Grease, Aeroshell No. 5, 70025</td>
</tr>
</tbody>
</table>

D. Expendables

- 0.032 inch (0.81 mm) stainless steel aircraft safety wire
 (Alternate: 0.032 inch [0.81 mm] aircraft safety cable and associated hardware)
- O-ring (Refer to Table 3-3)

2. Pre-Installation

A. Inspection of Shipping Package

(1) Examine the exterior of the shipping container, especially the box ends around each blade, for signs of shipping damage.

(a) If the box is damaged, contact the freight company for a freight claim.

(b) A hole, or tear, or crushed appearance at the end of the box (blade tips) may indicate that the propeller was dropped during shipment, possibly damaging the blades.

1. If the propeller is damaged, contact Hartzell Propeller Inc. Refer to the section, “Hartzell Propeller Inc. Contact Information” in the Introduction chapter of this manual.
B. Uncrating
 (1) Put the propeller on a firm support.
 (2) Remove the banding and any external wood bracing from the cardboard shipping container.
 (3) Remove the cardboard from the hub and blades.
 CAUTION: DO NOT STAND THE PROPELLER ON A BLADE TIP.
 (4) Put the propeller on a padded surface that supports the entire length of the propeller.
 (5) Remove the plastic dust cover cup from the propeller mounting flange, if installed.

C. Inspection after Shipment
 (1) After removing the propeller from the shipping container, examine the propeller components for shipping damage.

D. Reassembly of a Propeller Disassembled for Shipment
 (1) If a propeller was received disassembled for shipment, it must be reassembled by trained personnel in accordance with the applicable propeller maintenance manual.
 (2) For installation of ice protection systems manufactured by Hartzell, refer to Hartzell Propeller Inc. Ice Protection System Manual 180 (30-61-80).
3. **Propeller Mounting Hardware and Torque Information** (Rev. 1)

A. **Propeller Mounting Hardware**

 (1) Refer to Table 3-1 for part numbers of the propeller mounting hardware and O-rings.

B. **Torque Information**

 (1) The structural integrity of joints in the propeller that are held together with threaded fasteners is dependent upon proper torque application.

 (a) Vibration can cause an incorrectly tightened fastener to fail in a matter of minutes.

 (b) Correct tension in a fastener depends on a variety of known load factors and can influence fastener service life.

 (c) Correct tension is achieved by application of measured torque.

 (2) Use accurate wrenches and professional procedures to make sure of correct tensioning.

 (3) Refer to Table 3-2 for the torque values to use when installing a Hartzell propeller.

 (4) When an adapter is used with a torque wrench, use the equation in Figure 3-1 to determine the correct torque value.

 (5) Refer to Figure 3-2 for the proper torquing sequence of the propeller mounting bolts/nuts.

<table>
<thead>
<tr>
<th>Flange</th>
<th>O-ring</th>
<th>Stud/Bolt</th>
<th>Nut</th>
<th>Washer/Spacer</th>
<th>Spring Pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>C-3317-225-1</td>
<td>A-2429-()</td>
<td>A-2044</td>
<td>A-1381</td>
<td>n/a</td>
</tr>
<tr>
<td>G</td>
<td>C-3317-225-1</td>
<td>104606</td>
<td>104339</td>
<td>B-3851-0563</td>
<td>B-3842-0500</td>
</tr>
<tr>
<td>H</td>
<td>C-3317-225-1</td>
<td>A-2429-3</td>
<td>A-2044</td>
<td>A-1381</td>
<td>n/a</td>
</tr>
<tr>
<td>Q</td>
<td>C-3317-225-1</td>
<td>A-2429-()</td>
<td>A-2044</td>
<td>103555</td>
<td>n/a</td>
</tr>
<tr>
<td>R</td>
<td>C-3317-228</td>
<td>A-2067</td>
<td>A-2069</td>
<td>A-1381</td>
<td>B-3842-0750</td>
</tr>
<tr>
<td>T</td>
<td>C-3317-225-1</td>
<td>100041</td>
<td>A-1373</td>
<td>A-965</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Propeller/Engine Flange O-rings and Mounting Hardware

Table 3-1
CAUTION 1:
For a propeller that does not use a lubricated (wet) torque, the mounting hardware must be clean and dry to prevent excessive preload of the mounting flange.

CAUTION 2:
Torque values with “wet” noted after them are based on lubricated threads with approved anti-seize compound MIL-PRF-83483().

CAUTION 3:
Refer to Figure 3-1 for torque reading when using a torque wrench adapter.

<table>
<thead>
<tr>
<th>Hardware</th>
<th>Torque</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-blade hub clamping bolts ONLY</td>
<td>27-33 Ft-Lbs (37-44 N•m)</td>
</tr>
<tr>
<td>3-blade low pitch jam nut ONLY</td>
<td>13.5-16.5 Ft-Lbs (18.3-22.4 N•m)</td>
</tr>
<tr>
<td>3-blade low pitch jam nut for the 3A2-Q(P)450(A)X Propeller ONLY</td>
<td>27-33 Ft-Lbs (20.4-33.8 N•m)</td>
</tr>
<tr>
<td>5-blade low pitch jam nut (B-3833-16) ONLY</td>
<td>120 Ft-Lbs (163 N•m)*</td>
</tr>
<tr>
<td>Spinner bracket/bulkhead mounting bolts (hub clamping bolt installation only)</td>
<td>27-33 Ft-Lbs (37-44 N•m)</td>
</tr>
<tr>
<td>Spinner bracket/bulkhead/ring mounting bolt to rear of hub</td>
<td>96-120 in-lbs (10-13 N•m)</td>
</tr>
<tr>
<td>Spinner bulkhead to ring mounting screw</td>
<td>70-85 in-lbs (94- 115 N•m)</td>
</tr>
<tr>
<td>F flange propeller mounting nuts</td>
<td>Initial torque 30 Ft-Lbs (54 N•m) Final torque 70-80 ft-lbs (94-108 N•m)</td>
</tr>
<tr>
<td>G flange propeller mounting nuts</td>
<td>Initial torque 10 Ft-Lbs (13 N•m) Final torque 15-20 ft-lbs (21-27 N•m)</td>
</tr>
<tr>
<td>H flange propeller mounting nuts</td>
<td>Initial torque 30 Ft-Lbs (54 N•m) Final torque 60-65 Ft-Lbs (81-88 N•m)</td>
</tr>
<tr>
<td>Q flange propeller mounting nuts</td>
<td>Initial torque 30 Ft-Lbs (54 N•m) Final torque 60-65 Ft-Lbs (81-88 N•m)</td>
</tr>
<tr>
<td>R flange propeller mounting bolts</td>
<td>Initial torque 30 Ft-Lbs (54 N•m) Final torque 60-70 Ft-Lbs (82-94 N•m)</td>
</tr>
<tr>
<td>T flange propeller mounting bolts</td>
<td>Initial torque 30 Ft-Lbs (54 N•m) Final torque 50-55 Ft-Lbs (67-74 N•m)</td>
</tr>
</tbody>
</table>

* Torque tolerance is ± 10 percent unless otherwise noted.
Calculating Torque When Using a Torque Wrench Adapter

Figure 3-1

The correction shown is for an adapter that is aligned with the centerline of the torque wrench. If the adapter is angled 90 degrees relative to the torque wrench centerline, the torque wrench reading and actual torque applied will be equal.
G Flange

Step 1 - Torque all mounting bolts/nuts to the initial torque value in accordance with Table 3-2 and Figure 3-1 in the sequence shown.

Step 2 - Torque all mounting bolts/nuts to the final torque value in accordance with Table 3-2 and Figure 3-1 in the sequence shown.

F, H, Q and T Flange

Step 1 - Torque all mounting bolts/nuts to the initial torque value in accordance with Table 3-2 and Figure 3-1 in the sequence shown.

Step 2 - Torque all mounting bolts/nuts to the final torque value in accordance with Table 3-1 and Figure 3-1 in the sequence shown.

R Flange

Step 1 - Torque all mounting bolts/nuts to the initial torque value in accordance with Table 3-2 and Figure 3-1 in the sequence shown.

Step 2 - Torque all mounting bolts/nuts to the final torque value in accordance with Table 3-2 and Figure 3-1 in the sequence shown.

Dashed line shows flange for 3 blade
Solid line shows flange for 5 blade

Torquing Sequence for Propeller Mounting Bolts/Nuts

Figure 3-2
2 Blade Hub Clamping Bolt Location

Figure 3-3
3 Blade Hub Clamping Bolt Location
Figure 3-4
5 Blade Hub Clamping Bolt Location
Figure 3-5
Bulkhead and Spinner Mounting (Hub Mounting Spinner)

Figure 3-6
4. Painting of a Hartzell Propeller Inc. Composite Spinner Assembly
 A. General
 (1) A Hartzell Propeller Inc. spinner assembly may consist of a combination of metal or composite components.

 (2) Composite spinner components supplied primed for painting require a resistance check after painting. For resistance check instructions, refer to the Hartzell Propeller Inc. Composite Spinner Field Maintenance and Minor Repair Manual 173 (61-10-73).

 (a) Composite spinner assemblies may be supplied primed for paint or may be painted at the time of manufacture.

 (b) If the spinner assembly is primed for paint, the spinner dome must be painted before being installed.

 (3) Painting the Spinner Assembly Components.

 CAUTION 1: CAUTION MUST BE TAKEN WHEN PAINTING A PRIMED COMPOSITE SPINNER COMPONENT IN ORDER TO MEET THE P-STATIC DISSIPATION REQUIREMENTS FOR THESE COMPONENTS. IMPROPER P-STATIC DISSIPATION COULD LEAD TO DISTORTION OR DAMAGE OF THE ELECTRONIC COMPONENTS IN THE AIRCRAFT, INCLUDING NAVIGATIONAL EQUIPMENT.

 CAUTION 2: THE SCREW HOLES IN THE SPINNER DOME, SPINNER BULKHEAD, AND THE SPINNER FAIRING MUST BE MASKED TO MEET THE P-STATIC REQUIREMENTS.

 CAUTION 3: THE MAXIMUM PERMITTED FILM THICKNESS OF PAINT IS 2 MILS WHEN DRY.

 (a) The components must be finished to the aircraft manufacturer’s specifications using an approved paint before flight.
(b) Spinner dome, bulkhead, and fairing screw holes must be masked before painting.

(c) The maximum permitted thickness of paint is 2 mils dry.
Spinner Support Bracket/Bulkhead Mounting Hardware
Aluminum Spinner Assembly

<table>
<thead>
<tr>
<th>Description</th>
<th>Hartzell Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bolt, 1/4-28, hex head</td>
<td>B-3384-()</td>
</tr>
<tr>
<td>Washer</td>
<td>B-3851-0463</td>
</tr>
</tbody>
</table>

104529 Spinner Dome and Fairing Attaching Hardware

<table>
<thead>
<tr>
<th>Description</th>
<th>Hartzell Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screw, bulkhead to hub</td>
<td>B-3872-2</td>
</tr>
<tr>
<td>Washer, bulkhead to hub</td>
<td>B-3860-416</td>
</tr>
<tr>
<td>Screw, spinner dome and fairing attaching to spinner bulkhead</td>
<td>B-3867-272</td>
</tr>
<tr>
<td>Washer, spinner dome and fairing attaching to spinner bulkhead</td>
<td>A-1020</td>
</tr>
<tr>
<td>Screw, fairing tab holes</td>
<td>B-3845-8</td>
</tr>
<tr>
<td>Washer, fairing tab holes</td>
<td>A-1020</td>
</tr>
</tbody>
</table>

104888() Spinner Dome and Bulkhead Attaching Hardware

<table>
<thead>
<tr>
<th>Description</th>
<th>Hartzell Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bolt, bulkhead to hub</td>
<td>B-3384-1H</td>
</tr>
<tr>
<td>Washer, bulkhead to hub</td>
<td>B-3837-0432</td>
</tr>
<tr>
<td>Screw, spinner dome attaching to spinner bulkhead</td>
<td>B-3867-272</td>
</tr>
<tr>
<td>Screw, spinner dome attaching to spinner bulkhead</td>
<td>B-3860-10L</td>
</tr>
<tr>
<td>Spacers</td>
<td>105542</td>
</tr>
<tr>
<td>O-ring, Cylinder to Bulkhead</td>
<td>C-3317-129</td>
</tr>
</tbody>
</table>
105085() Spinner Dome and Bulkhead Attaching Hardware

<table>
<thead>
<tr>
<th>Component</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spinner mounting ring</td>
<td>105124</td>
</tr>
<tr>
<td>Screw, mounting ring to hub</td>
<td>A-2070-6</td>
</tr>
<tr>
<td>Washer, mounting ring to hub</td>
<td>B-3837-0432</td>
</tr>
<tr>
<td>Screw, mounting ring to bulkhead</td>
<td>104789</td>
</tr>
<tr>
<td>Washer, mounting ring to bulkhead</td>
<td>B-3860-416</td>
</tr>
<tr>
<td>Nut, mounting ring to bulkhead</td>
<td>B-3814</td>
</tr>
<tr>
<td>Washer, mounting ring to bulkhead</td>
<td>B-3837-0432</td>
</tr>
<tr>
<td>Screw, spinner dome attaching to spinner bulkhead</td>
<td>102612-S50</td>
</tr>
<tr>
<td>Washer, spinner dome attaching to spinner bulkhead</td>
<td>B-3860-10L</td>
</tr>
<tr>
<td>Forward bulkhead mount</td>
<td>105330</td>
</tr>
<tr>
<td>O-ring, cylinder to bulkhead</td>
<td>C-3317-129</td>
</tr>
</tbody>
</table>

107153() Spinner Dome and Bulkhead Attaching Hardware

<table>
<thead>
<tr>
<th>Component</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screw, bulkhead to hub</td>
<td>A-2070-6</td>
</tr>
<tr>
<td>Washer, bulkhead to hub</td>
<td>B-3837-0432</td>
</tr>
<tr>
<td>Screw, spinner dome attaching to spinner bulkhead</td>
<td>B-3867-272</td>
</tr>
<tr>
<td>Washer, spinner dome attaching to spinner bulkhead</td>
<td>B-3860-10L</td>
</tr>
</tbody>
</table>

Spinner Support Bracket/Bulkhead Mounting Hardware

- **Hub Mounted**

Table 3-3 (page 2 of 2)
Spinner Mounting Ring Attachment to Hub and Bulkhead
Figure 3-7
5. Bulkhead Installation

CAUTION 1: INSTRUCTIONS AND PROCEDURES IN THIS CHAPTER MAY INVOLVE CRITICAL PARTS. REFER TO THE INTRODUCTION CHAPTER OF THIS MANUAL FOR INFORMATION ABOUT PROPELLER CRITICAL PARTS. CONTACT HARTZELL PROPELLER INC. FOR THE IDENTIFICATION OF SPECIFIC PROPELLER CRITICAL PARTS.

CAUTION 2: CONTACT HARTZELL PROPELLER INC. PRODUCT SUPPORT BEFORE REMOVING A SPINNER BULKHEAD FROM A PROPELLER WITH THE SPINNER BULKHEAD ATTACHED USING THE HUB CLAMPING BOLTS. DO NOT REMOVE THE HUB CLAMPING BOLTS EXCEPT AS SPECIFIED IN THIS INSTRUCTION. REMOVAL OF THE INCORRECT BOLTS MAY BREAK THE SEAL AND PERMIT LEAKAGE OF THE OIL.

A. General

(1) The spinner support, bulkhead, or spinner mounting ring mount to the propeller hub. The spinner dome will mount to the bulkhead. Follow the applicable directions in this section.

(2) Early configurations may have had a spinner support bracket/bulkhead that attached to the hub using the hub clamping bolts. Contact Hartzell Propeller Inc. Product Support before removing this spinner support bracket/bulkhead.

B. Spinner Mounting Ring to Bulkhead Installation - Refer to Figure 3-7

(1) Align the holes in the spinner mounting ring to the holes in the bulkhead.

(2) Using the screws and washers specified in Table 3-3, attach the spinner mounting ring to the bulkhead.

(3) Torque the spinner mounting ring to bulkhead mounting screws (dry) in accordance with Table 3-1.
(4) Align the holes in the spinner mounting ring to the attaching holes in the hub.

(5) Using the screws and washers specified in Table 3-1, attach the spinner mounting ring to the hub.

(6) Torque the spinner mounting screws (dry) in accordance with Table 3-2.

C. Spinner Bracket/Bulkhead Installation - Hub Mounted

(1) Align the holes in the spinner bracket/bulkhead to the attaching holes in the hub.

(2) Using the screws and washers specified in Table 3-3, attach the spinner support bracket/bulkhead to the hub.

(3) Torque the spinner support bracket/bulkhead mounting bolts (dry) in accordance with Table 3-2.
WARNING 1: ANY PART IDENTIFIED IN THIS MANUAL AS AN EXPERIMENTAL OR NON-AVIATION PART MUST NOT BE USED IN AN FAA OR INTERNATIONAL EQUIVALENT TYPE CERTIFICATED PROPELLER. A PART IDENTIFIED AS EXPERIMENTAL OR NON-AVIATION DOES NOT HAVE FAA OR INTERNATIONAL EQUIVALENT APPROVAL EVEN THOUGH IT MAY STILL SHOW AN AVIATION TC OR PC NUMBER STAMP. USE ONLY THE APPROVED ILLUSTRATED PARTS LIST PROVIDED IN THE APPLICABLE OVERHAUL MANUAL OR ADDITIONAL PARTS APPROVED BY AN FAA ACCEPTED DOCUMENT FOR ASSEMBLY OF A PROPELLER. THE OPERATOR ASSUMES ALL RISK ASSOCIATED WITH THE USE OF EXPERIMENTAL PARTS. USE OF EXPERIMENTAL PARTS ON AN AIRCRAFT MAY RESULT IN DEATH, SERIOUS BODILY INJURY, AND/OR SUBSTANTIAL PROPERTY DAMAGE.

WARNING 2: FAILURE TO FOLLOW THESE INSTALLATION INSTRUCTIONS MAY LEAD TO PROPELLER DAMAGE, ENGINE DAMAGE, OR PROPELLER FAILURE, WHICH MAY RESULT IN DEATH, SERIOUS BODILY INJURY, AND/OR SUBSTANTIAL PROPERTY DAMAGE. UNUSUAL OR ABNORMAL VIBRATION DEMANDS IMMEDIATE INSPECTION FOR IMPROPER PROPELLER INSTALLATION. PROPELLER SEPARATION MAY OR MAY NOT BE PROCEEDED BY VIBRATION.
Washer - install washer, P/N 103555, with chamfer toward engine flange

*NOTE: If a torque wrench adapter is used, use the calculation in Figure 3-1 to determine correct torque wrench setting.
*NOTE: If a torque wrench adapter is used, use the calculation in Figure 3-1 to determine correct torque wrench setting.
6. Propeller Installation

A. Flange Description

CAUTION: THE ALUMINUM HUB PROPELLER MOUNTING O-RING IS LOCATED ON THE INSIDE DIAMETER OF THE PROPELLER HUB. THERE SHOULD NOT BE AN O-RING ON THE ENGINE FLANGE WHEN INSTALLING AN ALUMINUM HUB PROPELLER.

1. Hartzell Propeller Inc. (A,B)(1,2) series propellers with composite blades are manufactured with several basic hub mounting flange designs. For example, 3A1-T() Series Propellers indicates an T flange.

2. Refer to Propeller Model Designation in the Description and Operation chapter of this manual for description of each flange type. Sample flanges are also shown in Figure 3-8 and Figure 3-9.

B. Installation of F, H, Q, and T Flange Propellers

1. Perform the applicable steps under Spinner Pre-Installation in this chapter.

WARNING: SOLVENTS ARE FLAMMABLE AND TOXIC TO THE SKIN, EYES AND RESPIRATORY TRACT. SKIN AND EYE PROTECTION IS REQUIRED. AVOID PROLONGED CONTACT. USE IN WELL VENTILATED AREA.

2. Clean the engine flange and propeller flange with solvent specified.

3. Refer to Figure 3-8. Lubricate the mounting flange O-ring with engine oil. Install the O-ring in the O-ring groove in the hub bore. Refer to Table 3-1 for the applicable O-ring and mounting hardware.

NOTE: When the propeller is received from the factory, the O-ring has been installed.

4. If applicable, install the washer, P/N 103555, with the chamfer side towards the engine flange.
WARNING: MAKE SURE THAT ANY EQUIPMENT USED TO INSTALL THE PROPELLER IS SUFFICIENT TO SUPPORT THE WEIGHT OF THE PROPELLER ASSEMBLY DURING INSTALLATION. ONE PERSON MUST NEVER ATTEMPT TO INSTALL AN UNSUPPORTED PROPELLER BY HIMSELF, REGARDLESS OF THE SIZE OR WEIGHT OF THE PROPELLER. MANUALLY LIFTING THE PROPELLER ONTO THE ENGINE CAN RESULT IN PERSONAL INJURY.

CAUTION 1: A PROPELLER MUST BE CORRECTLY SUPPORTED DURING INSTALLATION ON THE ENGINE. AVOID ANY ROCKING OR SHIFTING OF THE PROPELLER WHEN IT IS PARTIALLY ENGAGED WITH THE ENGINE. ROCKING OF THE PROPELLER DURING PROPELLER INSTALLATION CAN DAMAGE THE PROPELLER HUB MOUNTING FACE, CAUSING ACTUATION OIL LEAKAGE OR DAMAGE THAT MAY SCRAP THE HUB. HUB DAMAGE CAN ALSO INTRODUCE METAL INTO THE PROPELLER OIL ACTUATION SYSTEM, WHICH COULD POSSIBLY DAMAGE THE ENGINE.

CAUTION 2: WHEN INSTALLING THE PROPELLER ON THE AIRCRAFT, DO NOT DAMAGE THE ICE PROTECTION SYSTEM COMPONENTS, IF APPLICABLE.

(5) With a suitable support, such as a crane hoist or similar equipment, carefully move the propeller assembly to the aircraft engine mounting flange in preparation for installation.

(6) Install the propeller on the engine flange.
CAUTION 1: MOUNTING HARDWARE MUST BE CLEAN AND DRY TO PREVENT EXCESSIVE PRELOAD OF THE MOUNTING FLANGE.

CAUTION 2: TIGHTEN NUTS EVENLY TO AVOID HUB DAMAGE.

(7) Install the propeller mounting nuts (dry) with spacers, if required. Refer to Table 3-1.

(8) Torque the propeller mounting nuts (dry) in accordance with Table 3-2, Figure 3-1, and Figure 3-2.

(9) If the propeller is equipped with an ice protection system that uses components supplied by Hartzell Propeller Inc., applicable instructions and technical information can be found in Hartzell Propeller Inc. Ice Protection System Manual 180 (30-61-80) available on the Hartzell website at www.hartzellprop.com.

(10) Propeller ice protection system components installed on a propeller manufactured by Hartzell Propeller Inc. are controlled by the Hartzell Propeller Inc. Instructions for Continued Airworthiness (ICA).

(11) Install the propeller spinner dome in accordance with the section, “Spinner Installation” in this chapter.

C. Installation of G and R Flange Propellers

(1) Perform the applicable steps under Spinner Pre-Installation within this chapter.

WARNING: SOLVENTS ARE FLAMMABLE AND TOXIC TO THE SKIN, EYES AND RESPIRATORY TRACT. SKIN AND EYE PROTECTION IS REQUIRED. AVOID PROLONGED CONTACT. USE IN WELL VENTILATED AREA.

(2) Clean the engine flange and propeller flange with solvent.

(3) Refer to Figure 3-9. Install the O-ring in the O-ring groove in the rear of the hub. Refer to Table 3-1 for the applicable O-ring and mounting hardware.

NOTE: When the propeller is received from the factory, the O-ring has been installed.
WARNING: MAKE SURE THAT ANY EQUIPMENT USED TO INSTALL THE PROPELLER IS SUFFICIENT TO SUPPORT THE WEIGHT OF THE PROPELLER ASSEMBLY DURING INSTALLATION. ONE PERSON MUST NEVER ATTEMPT TO INSTALL AN UNSUPPORTED PROPELLER BY HIMSELF, REGARDLESS OF THE SIZE OR WEIGHT OF THE PROPELLER. MANUALLY LIFTING THE PROPELLER ONTO THE ENGINE CAN RESULT IN PERSONAL INJURY.

CAUTION 1: A PROPELLER MUST BE CORRECTLY SUPPORTED DURING INSTALLATION ON THE ENGINE. AVOID ANY ROCKING OR SHIFTING OF THE PROPELLER WHEN IT IS PARTIALLY ENGAGED WITH THE ENGINE. ROCKING OF THE PROPELLER DURING PROPELLER INSTALLATION CAN DAMAGE THE PROPELLER HUB MOUNTING FACE, CAUSING ACTUATION OIL LEAKAGE OR DAMAGE THAT MAY SCRAP THE HUB. HUB DAMAGE CAN ALSO INTRODUCE METAL INTO THE PROPELLER OIL ACTUATION SYSTEM, WHICH COULD POSSIBLY DAMAGE THE ENGINE.

CAUTION 2: WHEN INSTALLING THE PROPELLER ON THE AIRCRAFT, DO NOT DAMAGE THE ICE PROTECTION SYSTEM COMPONENTS, IF APPLICABLE.

(4) Install the propeller mounting bolts (dry). Refer to Table 3-1.

(5) With a suitable support, such as a crane hoist or similar equipment, carefully move the propeller assembly to the aircraft engine mounting flange in preparation for installation.

(6) Install the propeller on the engine flange.
CAUTION 1: MOUNTING HARDWARE MUST BE CLEAN AND DRY TO PREVENT EXCESSIVE PRELOAD OF THE MOUNTING FLANGE

CAUTION 2: TIGHTEN NUTS EVENLY TO AVOID HUB DAMAGE

(7) Torque the propeller mounting bolts (dry) and spacers/washers, if required, in accordance with Table 3-2, Figure 3-1, and Figure 3-2.

(8) Using safety wire or equivalent aircraft safety cable and associated hardware, safety the bolts in pairs (if required by the aircraft maintenance manual) at the rear of the propeller mounting flange.

(9) If the propeller is equipped with an ice protection system that uses components supplied by Hartzell Propeller Inc., applicable instructions and technical information can be found in Hartzell Propeller Inc. Ice Protection System Manual 180 (30-61-80) available on the Hartzell website at www.hartzellprop.com.

(10) Propeller ice protection system components installed on a propeller manufactured by Hartzell Propeller Inc. are controlled by the Hartzell Propeller Inc. Instructions for Continued Airworthiness (ICA).

(11) Install the propeller spinner dome in accordance with the section, “Spinner Installation” in this chapter.
7. Spinner Installation

CAUTION 1: INSTRUCTIONS AND PROCEDURES IN THIS CHAPTER MAY INVOLVE CRITICAL PARTS. REFER TO THE INTRODUCTION CHAPTER OF THIS MANUAL FOR INFORMATION ABOUT PROPELLER CRITICAL PARTS. CONTACT HARTZELL PROPELLER INC. FOR THE IDENTIFICATION OF SPECIFIC PROPELLER CRITICAL PARTS.

CAUTION 2: TO PREVENT DAMAGE TO THE BLADE AND BLADE PAINT, WRAP THE BLADE SHANKS IN SEVERAL LAYERS OF MASKING OR DUCT TAPE BEFORE INSTALLING THE SPINNER DOME. REMOVE THE TAPE AFTER THE SPINNER IS INSTALLED.

A. General

(1) The following instructions relate to Hartzell Propeller Inc. spinner assemblies only. In some cases, the airframe manufacturer produced the spinner assembly. If so, refer to the airframe manufacturer’s manual for spinner assembly installation instructions.
(2) Composite spinner assemblies P/N 104529 and with part serial numbers listed in Table 3-4 must be indexed when installed.

(a) The parts listed in Table 3-4 were manufactured using a process that matched the spinner dome, spinner bulkhead, and spinner fairing.

(b) The parts are identified with a number and the index mark.
 1. The spinner dome, spinner bulkhead, and spinner fairing being installed must have the same number.
 2. The parts will be identified with a number 1, 3, or 4.

(c) The spinner bulkhead has an index mark showing an arrow with two arrowheads and a number.
 1. One side of the arrow is the index mark for the spinner dome and one side of the arrow is the index mark for the fairing.

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>P/N</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spinner Dome</td>
<td>104573</td>
<td>1203753</td>
</tr>
<tr>
<td>Spinner Dome</td>
<td>104573</td>
<td>1203754</td>
</tr>
<tr>
<td>Spinner Dome</td>
<td>104573</td>
<td>1203755</td>
</tr>
<tr>
<td>Spinner Bulkhead</td>
<td>104572</td>
<td>1203758</td>
</tr>
<tr>
<td>Spinner Bulkhead</td>
<td>104572</td>
<td>1203759</td>
</tr>
<tr>
<td>Spinner Bulkhead</td>
<td>104572</td>
<td>1203760</td>
</tr>
<tr>
<td>Spinner Fairing</td>
<td>104571</td>
<td>1203799</td>
</tr>
<tr>
<td>Spinner Fairing</td>
<td>104571</td>
<td>1203800</td>
</tr>
<tr>
<td>Spinner Fairing</td>
<td>104571</td>
<td>1203801</td>
</tr>
</tbody>
</table>

Serial Numbers Affected by Indexing Requirement
Table 3-4
B. Aluminum Single Piece Spinner Dome except 105539()

(1) Examine the interior of the spinner dome. If the spinner dome has an internal support that encircles the propeller cylinder, the cylinder may need to be wrapped with one or more layers of UHMW tape (Hartzell Propeller Inc. P/N B-6654-100).

(a) When the spinner dome has been removed to facilitate maintenance, check the spinner dome internal support to cylinder fit.

(b) If the spinner dome loosens in service, add one or more layers of UHMW tape to the cylinder until the spinner dome fits snugly.

CAUTION: THE SPINNER DOME INTERNAL SUPPORT MUST FIT SNUGLY ON CYLINDER. AN IMPROPERLY SUPPORTED DOME COULD CAUSE CYLINDER DAMAGE OR A CRACK IN THE DOME OR BULKHEAD.

(2) Install the spinner dome and check for a snug fit where the internal support contacts the cylinder. If the support does not fit snugly on the cylinder, apply a layer of tape and recheck. Repeat until the spinner support fits snugly on the cylinder.

CAUTION: TO AVOID DAMAGING THE AIRCRAFT COWLING, THE SCREWS MUST NOT EXTEND MORE THAN THREE THREADS PAST THE BULKHEAD NUT PLATES.

(3) Using the supplied screws and washers, attach the spinner dome to the spinner bulkhead. Refer to Table 3-3.

(a) Install one or two screws in the hole(s) centered between two blade cutouts.

(b) Tighten the screw(s) until snug.

(c) Install one or two screws in the hole(s) centered between two blade cutouts on the opposite side of the spinner dome.

(d) Tighten the screw(s) until snug.
NOTE: For spinner assembly 104888() the forward bulkhead is bonded inside the spinner dome. For spinner assembly 105539() the forward bulkhead is not bonded to inside the spinner dome. The forward bulkhead is shown separately for illustration purpose only.

Installation of 104888() and 105539 Spinner Assemblies
Figure 3-10
Spinner Dome to Bulkhead Mounting Hole Alignment

Figure 3-11
(e) Repeat installation of the screws in the holes centered between two blade cutouts for the remaining areas.

(f) Tighten screw(s) until snug.

(g) Install the remaining screws in the remaining holes.

(h) Tighten until snug.

C. Composite Spinner Assembly P/N 105539()

(1) Using grease CM12, thoroughly lubricate the O-ring. Refer to Table 3-3.

(2) Put the O-ring in the groove on the cylinder. Refer to Figure 3-10.

(3) Put four spacers on the cylinder. Refer to Table 3-3.

 NOTE: The spacers are used to adjust the spinner dome preload.

(4) Gently push the spinner dome as far aft as it will go onto the bulkhead unit.

(5) Visually examine the spinner fit.

 (a) The spinner is correctly spaced when the holes in the spinner dome are misaligned 1/4 -1/3 of their diameter toward the front of the aircraft, or rear in a pusher installation. Refer to Figure 3-11.

 (b) Remove the spinner dome and add or remove spacers to achieve this alignment.

(6) Install and push the spinner dome aft to align the spinner mounting holes with those of the bulkhead or adapter ring.
CAUTION: MAKE SURE THAT THE SCREWS DO NOT EXTEND MORE THAN THREE THREADS PAST THE BULKHEAD NUTPLATES. IF THE SCREWS EXTEND MORE THAN THREE THREADS, THIS CAN CAUSE DAMAGE TO THE AIRCRAFT COWLING.

(7) Using the supplied screws and washers, attach the spinner dome to the spinner bulkhead. Refer to Table 3-3.

(a) Install one or two screws in the hole(s) centered between two blade cutouts.
(b) Tighten the screw(s) until snug.
(c) Install one or two screws in the hole(s) centered between two blade cutouts on the opposite side of the spinner dome.
(d) Tighten the screw(s) until snug.
(e) Repeat installation of the screws in the holes centered between two blade cutouts for the remaining areas.
(f) Tighten screw(s) until snug.
(g) Install the remaining screws in the remaining holes.
(h) Tighten until snug.
104529 Single Piece Spinner Assembly

Figure 3-12
105085() Spinner Assembly Installation
Figure 3-13
107153 Single Piece Spinner Assembly
Figure 3-14
D. Composite Single Piece Spinner Dome

(1) If a P/N 104529 spinner assembly is being installed:

 (a) Align the index mark on the inside of the spinner dome with the index mark on the spinner bulkhead.

 (b) Installation of the spinner dome. Refer to Figure 3-12. The forward bulkhead is bonded to the spinner dome. This spinner assembly incorporates a fairing attached to the engine-side of the spinner bulkhead.

(2) If a P/N 105085() spinner assembly is being installed:

 (a) Install the forward bulkhead mount on the cylinder.

 1. The forward bulkhead mount should fit snugly on the cylinder.

 2. If the forward bulkhead mount is loose on the cylinder, cut the B-6654-100-1 UHMW tape into strips approximately 2.0 inches (50.8 mm) long, as needed.

 a. Install strips of the B-6654-100-1 UHMW tape from front to back and spaced evenly around the inner diameter of the forward bulkhead mount.

 b. If needed, install multiple layers of the B-6654-100-1 UHMW tape until the forward bulkhead mount fits snugly on the cylinder.

 (b) Using grease CM12, thoroughly lubricate the O-ring. Refer to Table 3-3.

 (c) Put the O-ring in the groove on the forward bulkhead mount. Refer to Figure 3-13.

 (d) Install the spinner dome over the forward bulkhead mount and onto the bulkhead. The O-ring on the forward bulkhead mount will cause resistance when the spinner dome is installed.

 (e) The spinner dome must fit snugly on the forward bulkhead mount.

 NOTE: This spinner dome installation is not preloaded.
(3) If a P/N 107153 spinner assembly is being installed:
 (a) Align the index mark on the inside of the spinner dome with the index mark on the spinner bulkhead.
 (b) Install the spinner dome. Refer to Figure 3-14.
 1 The forward bulkhead is bonded to the spinner dome.

(4) For all composite spinner domes, except 104888():
 (a) Cut the B-6654-100-1 UHMW tape into strips approximately 2.0 inches (50.8 mm) long as needed.
 (b) Install strips of the B-6654-100-1 UHMW tape from front to back and spaced evenly around the inner diameter of the forward bulkhead.
 1 If needed, install multiple layers of the B-6654-100-1 UHMW tape until the spinner dome fits snugly on the cylinder.
 (c) Install the spinner dome over the cylinder and onto the bulkhead. If the spinner dome slips easily over the cylinder, remove the spinner dome and install an additional layer of UHMW tape.
 (d) The spinner dome must be a snug fit on the cylinder of the propeller.

 NOTE: This spinner dome installation is not preloaded.

 CAUTION: TO AVOID DAMAGING THE AIRCRAFT COWLING, THE SCREWS MUST NOT EXTEND MORE THAN THREE THREADS PAST THE SPINNER BULKHEAD NUT PLATES.

(e) Using the supplied screws and washers, attach the spinner dome to the spinner bulkhead. Refer to Table 3-3.
 1 Install two screws in the two holes centered between two blade cutouts.
 2 Tighten the two screws until snug.
 3 Install two screws in the two holes centered between two blade cutouts on the opposite side of the spinner dome.
4 Tighten the two screws until snug.
5 Repeat installation of two screws in the holes centered between two blade cutouts for the remaining areas.
6 Tighten two screws until snug.
7 Install the remaining screws in the remaining holes.
8 Tighten until snug.

(5) Installation of the fairing, if applicable:
 (a) Align the attaching holes of the fairing to the holes in the spinner bulkhead.
 (b) Using the supplied screws and washers, attach the fairing to the spinner bulkhead. Refer to Table 3-3.
 1 Install two screws in the center two holes used to attach the fairing to the bulkhead.
 2 Tighten the two screws until snug.
 3 Install each remaining screw and tighten until snug.
 (c) Each fairing, has a tab. Using the supplied screws and washers, attach the tab to the opposite fairing. Tighten until snug. Refer to Table 3-3.

(6) Composite spinner assembly P/N 104888()
 (a) Using grease CM12, thoroughly lubricate the O-ring. Refer to Table 3-3.
 (b) Put the O-ring in the groove on the cylinder. Refer to Figure 3-10.
 (c) Put four spacers on the cylinder. Refer to Table 3-3.
 NOTE: The spacers are used to adjust the spinner dome preload.
 (d) Gently push the spinner dome as far aft as it will go onto the bulkhead unit.
(e) Visually examine the spinner fit.

1. The spinner is correctly spaced when the holes in the spinner dome are misaligned 1/4 - 1/3 of their diameter toward the front of the aircraft, or rear in a pusher installation. Refer to Figure 3-11.

2. Remove the spinner dome and add or remove spacers to achieve this alignment.

(f) Install and push the spinner dome aft to align the spinner mounting holes with those of the bulkhead or adapter ring.

CAUTION: MAKE SURE THAT THE SCREWS DO NOT EXTEND MORE THAN THREE THREADS PAST THE BULKHEAD NUTPLATES. IF THE SCREWS EXTEND MORE THAN THREE THREADS, THIS CAN CAUSE DAMAGE TO THE AIRCRAFT COWLING.

(g) Using screws and washers, attach the spinner to the bulkhead or adapter ring. Refer to Table 3-3.
Spinner Assembly Clearance

Figure 3-15
8. **Spinner Assembly Clearance Checks** (Rev. 1)

 A. Clearance Checks - Refer to Figure 3-15

 (1) The spinner bulkhead must be spaced between the hub and the engine cowl to permit the spinner dome blade cut-out openings to not come in contact with the propeller blades at all blade angle locations. Refer to the applicable Spinner Bulkhead Installation procedure to adjust spacing between the hub and the engine cowl.

 (a) The spinner bulkhead and any attached filler plate must also not come in contact with the propeller blades at all blade angle locations.

 (2) The edge of the spinner bulkhead and the spinner dome must not touch the engine cowl and not cause interference during propeller/engine operation. Refer to the applicable Spinner Bulkhead Installation procedure to adjust spacing between the hub and the engine cowl.

 (3) The hub clamping bolts on aluminum hub propellers must not come in contact with any non-rotating part of the aircraft.

 (4) The spinner dome, spinner bulkhead, and the hub clamping bolts must not come in contact with any ice protection system hardware.

 (5) For spinner domes with a bonded forward bulkhead, make sure the flange on the forward bulkhead does not bottom out on the flared radius of the cylinder.

9. **Post-Installation Checks**

 A. Perform Static RPM Check as outlined in the Testing and Troubleshooting chapter in this manual.
10. **Spinner Removal**

CAUTION 1: INSTRUCTIONS AND PROCEDURES IN THIS CHAPTER MAY INVOLVE CRITICAL PARTS. REFER TO THE INTRODUCTION CHAPTER OF THIS MANUAL FOR INFORMATION ABOUT PROPELLER CRITICAL PARTS. CONTACT HARTZELL PROPELLER INC. FOR THE IDENTIFICATION OF SPECIFIC PROPELLER CRITICAL PARTS.

CAUTION 2: WRAP THE BLADE SHANKS IN SEVERAL LAYERS OF MASKING OR DUCT TAPE BEFORE REMOVING THE SPINNER DOME, TO PREVENT DAMAGING THE BLADE AND BLADE SURFACE.

A. Removal of a Spinner Assembly not from Hartzell Propeller Inc.
 (1) If the spinner assembly is supplied by a source other than Hartzell Propeller Inc., refer to the airframe manufacturer’s manual for spinner installation instructions.

B. Removal of Hartzell Propeller Inc. Single Piece Spinner
 (1) If applicable, remove the screws and washers that attach the tabs on the fairing to the opposite fairing.
 (2) If applicable, remove the screws and washers that attach the spinner fairing to the spinner bulkhead.
 (3) Remove the screws and washers that attach the spinner dome to the spinner bulkhead or adapter ring.
 (4) Remove the spinner dome.
 (5) If applicable, remove the forward bulkhead mount and O-ring from the cylinder.
11. Propeller Removal

CAUTION: INSTRUCTIONS AND PROCEDURES IN THIS CHAPTER MAY INVOLVE CRITICAL PARTS. REFER TO THE INTRODUCTION CHAPTER OF THIS MANUAL FOR INFORMATION ABOUT PROPELLER CRITICAL PARTS. CONTACT HARTZELL PROPELLER INC. FOR THE IDENTIFICATION OF SPECIFIC PROPELLER CRITICAL PARTS.

A. Removal of F, H, Q, and T Flange Propellers

(1) Remove the spinner dome in accordance with the section “Spinner Removal” in this chapter.

(2) If the propeller is equipped with an ice protection system that uses components supplied by Hartzell Propeller Inc., applicable instructions and technical information can be found in Hartzell Propeller Inc. Ice Protection System Manual 180 (30-61-80) available on the Hartzell website at www.hartzellprop.com.

(3) Propeller ice protection system components installed on a propeller manufactured by Hartzell Propeller Inc. are controlled by the Hartzell Propeller Inc. Instructions for Continued Airworthiness (ICA).

WARNING: MAKE SURE THE SLING IS SUFFICIENT TO SUPPORT THE WEIGHT OF THE PROPELLER ASSEMBLY DURING REMOVAL.

(4) Support the propeller assembly with a sling.

NOTE: Supporting the propeller with the sling may be delayed until all but two mounting nuts and spacers have been removed.

(5) If the propeller will be reinstalled and it has been dynamically balanced, make an identifying mark (with a felt-tipped pen only) on the propeller hub and a matching mark on the engine flange to make sure of correct positioning of the propeller during re-installation. This will prevent dynamic imbalance.
CAUTION: DISCARD THE PROPELLER MOUNTING NUTS, WASHERS, AND SPACERS IF THEY ARE DAMAGED OR CORRODED, OR WHEN THE PROPELLER IS REMOVED FOR OVERHAUL.

(6) Remove the six mounting nuts.
 (a) If the propeller is removed between overhaul intervals, mounting studs, washers, nuts, and spacers may be reused if they are not damaged or corroded.

CAUTION: REMOVE THE PROPELLER FROM THE MOUNTING FLANGE WITH CARE TO PREVENT DAMAGING THE PROPELLER MOUNTING STUDS.

(7) Using the support sling, remove the propeller from the mounting flange.

(8) Put the propeller on a cart for transport.

B. Removal of G and R Flange Propellers

(1) Remove the spinner dome in accordance with the section “Spinner Removal” in this chapter.

(2) If the propeller is equipped with an ice protection system that uses components supplied by Hartzell Propeller Inc., applicable instructions and technical information can be found in Hartzell Propeller Inc. Ice Protection System Manual 180 (30-61-80) available on the Hartzell website at www.hartzellprop.com.

(3) Propeller ice protection system components installed on a propeller manufactured by Hartzell Propeller Inc. are controlled by the Hartzell Propeller Inc. Instructions for Continued Airworthiness (ICA).

(4) Cut and remove the safety wire (if installed) on the propeller mounting bolt.

WARNING: MAKE SURE THE SLING IS SUFFICIENT TO SUPPORT THE WEIGHT OF THE PROPELLER ASSEMBLY DURING REMOVAL.

(5) Support the propeller assembly with a sling.
(6) If the propeller will be reinstalled and it has been dynamically balanced, make an identifying mark (with a felt-tipped pen only) on the propeller hub and a matching mark on the engine flange to make sure of correct positioning of the propeller during re-installation. This will prevent dynamic imbalance.

CAUTION: DISCARD THE PROPELLER BOLTS, WASHERS, AND SPACERS IF THEY ARE DAMAGED OR CORRODED, OR WHEN THE PROPELLER IS REMOVED FOR OVERHAUL.

(7) Unscrew the mounting bolts from the engine bushings.
(a) If the propeller is removed between overhaul intervals, mounting bolts, washers, and spacers may be reused if they are not damaged or corroded.

CAUTION: REMOVE THE PROPELLER FROM THE MOUNTING FLANGE WITH CARE TO PREVENT DAMAGING THE PROPELLER MOUNTING STUDS.

(8) Using the support sling, remove the propeller from the mounting flange.

(9) Put the propeller on a cart for transport.
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Operational Checks .. 4-3</td>
<td></td>
</tr>
<tr>
<td>A. Operational Checks .. 4-3</td>
<td></td>
</tr>
<tr>
<td>2. Propeller Ice Protection Systems .. 4-3</td>
<td></td>
</tr>
<tr>
<td>A. Operational Checks and Troubleshooting 4-3</td>
<td></td>
</tr>
<tr>
<td>3. Troubleshooting .. 4-3</td>
<td></td>
</tr>
<tr>
<td>A. Hunting and Surging .. 4-3</td>
<td></td>
</tr>
<tr>
<td>B. Engine Speed Varies with Flight Attitude (or Airspeed) 4-4</td>
<td></td>
</tr>
<tr>
<td>C. Loss of Propeller Control - () (A,B)1 series propellers only ... 4-6</td>
<td></td>
</tr>
<tr>
<td>D. Loss of Propeller Control - () (A,B)2 series propellers only ... 4-6</td>
<td></td>
</tr>
<tr>
<td>E. Failure to Feather or Feathers Slowly 4-7</td>
<td></td>
</tr>
<tr>
<td>F. Failure to Unfeather ... 4-7</td>
<td></td>
</tr>
<tr>
<td>G. Start Locks (Anti-feather Latches) Fail to Latch on Shutdown 4-7</td>
<td></td>
</tr>
<tr>
<td>H. Vibration ... 4-8</td>
<td></td>
</tr>
<tr>
<td>I. Propeller Overspeed .. 4-10</td>
<td></td>
</tr>
<tr>
<td>J. Overspeed Avoidance (Operational) - () (A,B)1 Series Propellers ... 4-10</td>
<td></td>
</tr>
<tr>
<td>K. Propeller Underspeed ... 4-10</td>
<td></td>
</tr>
</tbody>
</table>
1. **Operational Checks** (Rev. 1)
 A. Operational Checks
 (1) Refer to the Inspection and Check chapter of this manual for operational checks including pre-flight, initial run-up, and post-run checks.

2. **Propeller Ice Protection Systems** (Rev. 1)

 WARNING: CONSULT THE PILOT OPERATING HANDBOOK (INCLUDING ALL SUPPLEMENTS) REGARDING FLIGHT INTO CONDITIONS OF KNOWN ICING. THE AIRCRAFT MAY NOT BE CERTIFICATED FOR FLIGHT INTO KNOWN ICING CONDITIONS, EVEN THOUGH AN ICE PROTECTION SYSTEM IS INSTALLED.

 A. Operational Checks and Troubleshooting
 (1) Refer to the Anti-ice and De-ice Systems chapter of this manual for operational checks and troubleshooting information for Hartzell Propeller Inc. ice protection systems.

3. **Troubleshooting**

 CAUTION: INSTRUCTIONS AND PROCEDURES IN THIS SECTION MAY INVOLVE PROPELLER CRITICAL PARTS. REFER TO THE INTRODUCTION CHAPTER OF THIS MANUAL FOR INFORMATION ABOUT PROPELLER CRITICAL PARTS. REFER TO THE ILLUSTRATED PARTS LIST CHAPTER OF THE APPLICABLE OVERHAUL MANUAL(S) FOR THE IDENTIFICATION OF SPECIFIC PROPELLER CRITICAL PARTS.

 A. Hunting and Surging (Rev. 2)
 (1) General
 (a) Hunting is characterized by a cyclic variation in engine speed above and below desired speed. Surging is characterized by a large increase/decrease in engine speed, followed by a return to set speed after one or two occurrences.
(b) If the propeller is hunting, a certified airframe and powerplant mechanic with the appropriate rating or a certified propeller repair station with the appropriate rating should check:

1. Governor
2. Fuel control
3. Synchrophaser, or synchronizer (if applicable)

(2) If the propeller is surging:

(a) Perform the “Initial Run-Up” in accordance with the Inspection and Check chapter of this manual to release trapped air from the propeller.

1. If surging reoccurs it is most likely due to a faulty governor.
 a. Have the governor tested by a certified propeller repair station with the appropriate rating.

(b) Hunting and/or surging may also be caused by friction or binding within the governor control, or internal propeller corrosion, which causes the propeller to react slower to governor commands.

1. To isolate these faults, the propeller must be tested on a test bench at a certified propeller repair station with the appropriate rating.

B. Engine Speed Varies with Flight Attitude (or Airspeed)

(1) Small variances in engine speed are normal and are no cause for concern.

(2) Increase in engine speed while descending or increasing airspeed:

(a) Non-feathering () (A,B) 1 series propeller:

1. Governor is not increasing oil volume in the propeller.
2. Engine transfer bearing leaking excessively
3. Excessive friction in the blade bearings or pitch changing mechanism
(b) Feathering ()(A,B)2 series propeller:
 1. Governor is not reducing oil volume in the propeller.
 2. Excessive friction in the blade bearings or pitch changing mechanism.

(3) Decrease in engine speed while increasing airspeed:
 (a) Non-feathering ()(A,B)1 series propeller:
 1. Governor pilot valve is stuck and is excessively increasing oil volume.
 (b) Feathering ()(A,B)2 series propeller:
 1. Governor pilot valve is stuck and is excessively decreasing oil volume.
 2. Feathering command engaged on propeller pitch control.

(4) Increase in engine speed while decreasing airspeed:
 (a) Non-feathering ()(A,B)1 series propeller:
 1. Governor pilot valve is stuck and is excessively decreasing oil volume.
 (b) Feathering ()(A,B)2 series propeller:
 1. Governor pilot valve is stuck and is excessively increasing oil volume.

(5) Decrease in engine speed while decreasing airspeed:
 (a) Non-feathering ()(A,B)1 series propeller:
 1. Governor is not reducing oil volume in the propeller.
 2. Excessive friction in blade bearings or pitch changing mechanism.
 (b) Feathering ()(A,B)2 series propeller:
 1. Governor is not increasing oil volume in the propeller.
 2. Engine transfer bearing leaking excessively.
 3. Excessive friction in the blade bearings or pitch changing mechanism.
C. Loss of Propeller Control - (A,B)1 series propellers only
 (1) Propeller goes to uncommanded low pitch (high RPM)
 (a) Loss of propeller oil pressure - check:
 1 Governor pressure relief valve for proper operation
 2 Governor drive for damage
 3 Adequate engine oil supply
 4 Engine transfer bearing leaking excessively
 (b) Internal oil leakage to opposite side of piston and into hub
 (2) Propeller goes to uncommanded high pitch (low RPM)
 (a) Governor pilot valve sticking
 (3) RPM increases with power and airspeed, propeller RPM control has little or no effect
 (a) Excessive friction in the blade bearings or pitch changing mechanism
 (b) Internal oil leakage to opposite side of piston and into hub

D. Loss of Propeller Control - (A,B)2 series propellers only
 (1) Propeller goes to uncommanded high pitch (or feather)
 (a) Loss of propeller oil pressure - check:
 1 Governor pressure relief valve for proper operation.
 2 Governor drive for damage.
 3 Adequate engine oil supply.
 4 Engine transfer bearing leaking excessively.
 (b) Start locks not engaging
 (2) Propeller goes to uncommanded low pitch (high RPM)
 (a) Governor pilot valve sticking.
 (3) RPM increases with power and airspeed, propeller RPM control has little or no effect.
 (a) Excessive friction in blade bearings or pitch changing mechanism.
 (b) Broken feathering spring.
(4) RPM Control Sluggish (especially on reducing RPM)
 (a) Broken feathering spring.

E. Failure to Feather (or feathers slowly) (Rev. 1)
 (1) Air charge lost or low. If applicable, refer to the section, “Air Charge” in the Maintenance Practices chapter of this manual.
 (2) Broken feathering spring (if applicable).
 (3) Check for proper function and rigging of propeller/governor control linkage.
 (4) Check the governor function.
 (5) The propeller must be inspected for misadjustment or internal corrosion (usually in blade bearings or pitch changing mechanism) that results in excessive friction.
 (a) This inspection must be performed by a certified propeller repair station with the appropriate rating.

F. Failure to Unfeather (Rev. 1)
 (1) Check for proper function and rigging of propeller control linkage.
 (2) Check the governor function.
 (3) Check for excessive oil leakage at the engine transfer bearing.
 (4) The propeller must be inspected for misadjustment or internal corrosion (usually in blade bearings or pitch change mechanism) that results in excessive friction.
 (a) This inspection must be accomplished by a certified propeller repair station with the appropriate rating.

G. Start Locks (Anti-feather Latches) Fail to Latch on Shutdown
 (1) Propeller was feathered before shutdown.
 (2) Shutdown occurred at high RPM with prop control off the low pitch stop.
 (3) Excessive engine transfer bearing oil leakage.
 (4) Excessive governor pump leakage.
 (5) Broken start locks.
 (6) Problems 3.G(1) and 3.G(2) can be solved by restarting the engine, putting the propeller control in the proper shutdown position, and shutting down the engine.

H. Vibration (Rev. 1)

CAUTION 1: ANY VIBRATION THAT OCCURS SUDDENLY, OR IS ACCOMPANIED BY UNEXPLAINED OIL LEAKAGE SHOULD BE INVESTIGATED IMMEDIATELY BEFORE FURTHER FLIGHT.

CAUTION 2: VIBRATION PROBLEMS BECAUSE OF PROPELLER SYSTEM IMBALANCE ARE NORMALLY FELT THROUGHOUT THE RPM RANGE, WITH THE INTENSITY OF VIBRATION INCREASING WITH RPM. VIBRATION PROBLEMS THAT OCCUR IN A NARROW RPM RANGE ARE A SYMPTOM OF RESONANCE THAT IS POTENTIALLY HARMFUL TO THE PROPELLER. AVOID OPERATION UNTIL THE PROPELLER CAN BE CHECKED BY A CERTIFIED PROPELLER REPAIR STATION WITH THE APPROPRIATE RATING.

(1) Check:

(a) Control surfaces, cowl flaps, exhaust system, landing gear doors, etc. for excessive play that may be causing vibration that is unrelated to the propeller

(b) Isolation of engine controls and lines

(c) Engine mount wear

(d) Level of red dye oil in the propeller

(e) Proper engine/propeller flange mating

(f) Blade track:

1 Refer to the section, “Blade Track” in the Inspection and Check chapter of this manual.
(g) Blade angles:
 1 Blade angles must be within specified tolerance between blades.
 a Refer to a certified propeller repair station with the appropriate rating to check/adjust blade angles.

(h) Spinner for cracks, improper installation, or “wobble” during operation

(i) Static balance

(j) Propeller installation
 1 Remove and reinstall the propeller 180 degrees from the original installation position.
 a “R” flange propellers installed on an engine that has an “R” flange cannot be reinstalled 180 degrees from the original installation position.

(k) Hub damage or cracking

(l) Grease or oil leakage

(m) Blade deformation

(2) Dynamic Balance
 (a) Dynamic balancing is recommended after installing or performing maintenance on a propeller. While this is normally an optional task, it may be required by the engine or airframe manufacturer to make certain the propeller/engine combination is balanced properly before operation.
 1 Refer to the engine or airframe manuals, and the Maintenance Practices chapter of this manual.
I. Propeller Overspeed
 (1) Check:
 (a) Tachometer error
 (b) Low pitch stop adjustment
 (c) Governor Maximum RPM set too high
 (d) Loss of oil pressure - (A,B)1 propellers only
 1 Oil starvation
 2 Governor failure
 3 Accumulator air pressure low
 (e) Governor pilot valve jammed to supply high pressure only - (A,B)2 series propellers only
 (f) Oil leaking past the piston causing the hydraulic lock of the piston in the cylinder - (A,B)1 propellers only

J. Overspeed Avoidance (Operational) - (A,B)1 Series Propellers
 (1) Hartzell Propeller Inc. (A,B)1 series propellers are designed to reduce blade angle in the event of a loss of oil pressure. This reduction in blade angle allows all available engine power to be utilized in the event of an oil system failure. This reduction in blade angle also can allow the engine to overspeed, especially at higher airspeeds.

K. Propeller Underspeed
 (1) Check:
 (a) Tachometer error
 (b) Excessive transfer bearing oil leakage
 (c) Governor oil pressure low
 (d) Governor oil passage clogged
INSPECTION AND CHECK - CONTENTS

1. Pre-Flight Checks ... 5-3
 A. Important Information .. 5-3
 B. Propeller Blades .. 5-3
 C. Spinner Assembly and Blade Retention Components 5-4
 D. Hardware ... 5-4
 E. Grease/Oil Leakage ... 5-4
 F. Initial Run-Up .. 5-5
 G. Additional Information .. 5-5

2. Operational Checks ... 5-5
 A. Initial Run-Up .. 5-5
 B. Post-Run Check ... 5-6
 C. Propeller Ice Protection System 5-7

3. Required Periodic Inspections and Maintenance 5-7
 A. Periodic Inspection ... 5-7
 B. Periodic Maintenance ... 5-8
 C. Periodic Coin-Tap Inspections for Composite Blades 5-8
 D. Airworthiness Limitations .. 5-9
 E. Overhaul Periods .. 5-9

4. Inspection Procedures .. 5-10
 A. Blade Damage ... 5-10
 B. Oil Leakage ... 5-10
 C. Oil Level Check Procedure - 3 Blade Only 5-13
 D. Oil Level Check Procedure - 5 Blade Only 5-16
 E. Vibration ... 5-17
 F. Blade Track ... 5-21
 G. Loose Blades .. 5-23
 H. Corrosion ... 5-24
 I. Spinner Damage .. 5-24
 J. Propeller Ice Protection Systems 5-24
 K. UID Plate Inspection ... 5-25
INSPECTION AND CHECK - CONTENTS, CONTINUED

5. Special Inspections ... 5-27
 A. Overspeed .. 5-27
 B. Lightning Strike - Propeller Assembly 5-28
 C. Lightning Strike - Electrically Actuated Governor 5-29
 D. Foreign Object Strike/Ground Strike 5-30
 E. Fire/Heat Damage .. 5-32
 F. Sudden Stoppage ... 5-32
 G. Engine Oil Contamination ... 5-33

6. Long Term Storage ... 5-33
 A. Important Information ... 5-33
 B. Composite Blades ... 5-34

LIST OF FIGURES

Oil Level Check - 3 Blade PropellerFigure 5-1 5-12
Oil Level Check - 5 Blade PropellerFigure 5-2 5-14
Checking Blade Track ...Figure 5-3 5-20
Blade Movement ...Figure 5-4 5-22
Reciprocating Engine Overspeed LimitsFigure 5-5 5-26
1. Pre-Flight Checks (Rev. 2)

CAUTION: INSTRUCTIONS AND PROCEDURES IN THIS SECTION MAY INVOLVE PROPELLER CRITICAL PARTS. REFER TO THE INTRODUCTION CHAPTER OF THIS MANUAL FOR INFORMATION ABOUT PROPELLER CRITICAL PARTS. REFER TO THE ILLUSTRATED PARTS LIST CHAPTER OF THE APPLICABLE OVERHAUL MANUAL(S) FOR THE IDENTIFICATION OF SPECIFIC PROPELLER CRITICAL PARTS.

A. Important Information

(1) Follow propeller pre-flight inspection procedures specified in the Pilot Operating Handbook (POH) in addition to the inspections specified in this section.

(2) Defects or damage found during the pre-flight inspection must be evaluated in accordance with the applicable section in the Testing and Troubleshooting chapter and/or the Maintenance Practices chapter of this manual.

B. Propeller Blades

(1) Visually examine the entire blade (leading edge, trailing edge, face, and camber sides) for nicks, gouges, erosion, cracks, and debonds (composite blades only).

(a) Normal erosion (sand-blasted appearance) on the leading edge of the blade is permitted and does not require removal before further flight.

(2) Visually examine the blades for lightning strike indications in accordance with the section, “Lightning Strike” in this chapter.

(3) Check the blades for radial play or movement of the blade tip (in-and-out, fore-and-aft, and end play).

(a) Refer to the section, “Loose Blades” in this chapter for blade play limits.
(4) If an ice protection system is installed, visually examine the anti-icing or de-ice boot for damage.
 (a) Refer to the Anti-ice and De-ice Systems chapter in this manual for operational checks and troubleshooting information for Hartzell Propeller Inc. ice protection systems.

(5) Composite Blades Only
 (a) Composite blades that do not have an anti-icing or de-ice boot installed may require erosion tape on the leading edge of the blade.

1. Refer to the section, “Erosion Tape Installation” in the Maintenance Practices chapter of this manual for requirements and instructions.

C. Spinner Assembly and Blade Retention Components
 (1) Inspect the spinner and the visible blade retention components for damage and/or cracks.

 (a) Repair or replace components as required before further flight.

D. Hardware
 (1) Check for loose or missing hardware.

 (a) Retighten or reinstall as necessary.

WARNING: ABNORMAL GREASE/OIL LEAKAGE CAN BE AN INDICATION OF A FAILING PROPELLER BLADE OR BLADE RETENTION COMPONENT. AN IN-FLIGHT BLADE SEPARATION CAN RESULT IN A CATASTROPHIC AIRCRAFT ACCIDENT.

E. Grease/Oil Leakage
 (1) Examine the face and camber-sides of the blades for evidence of grease/oil leakage.

 (2) Using an appropriate light source, examine the propeller through the blade cut-outs in the spinner for signs of grease/oil leakage.

 (a) Spinner removal is *not* required for this inspection.

 (b) If grease/oil leakage is found, refer to the section, “Inspection Procedures” in this chapter.
F. Initial Run-Up
 (1) Perform the Initial Run-Up procedure in accordance with the section, “Operational Checks” in this chapter.

G. Additional Information
 (1) Refer to the airframe manufacturer’s manual for additional pre-flight checks.
 (2) Refer to the section, “Inspection Procedures” in this chapter for additional inspection/repair information.

2. Operational Checks (Rev. 1)

 CAUTION: INSTRUCTIONS AND PROCEDURES IN THIS SECTION MAY INVOLVE PROPELLER CRITICAL PARTS. REFER TO THE INTRODUCTION CHAPTER OF THIS MANUAL FOR INFORMATION ABOUT PROPELLER CRITICAL PARTS. REFER TO THE ILLUSTRATED PARTS LIST CHAPTER OF THE APPLICABLE OVERHAUL MANUAL(S) FOR THE IDENTIFICATION OF SPECIFIC PROPELLER CRITICAL PARTS.

A. Initial Run-Up
 (1) Following propeller installation and before flight, perform the Initial Run-Up procedure in accordance with the instructions in this section.

 WARNING: REFER TO THE AIRCRAFT MAINTENANCE MANUAL FOR ADDITIONAL PROCEDURES THAT MAY BE REQUIRED AFTER PROPELLER INSTALLATION.

 (2) Perform engine start and warm-up in accordance with the Pilot’s Operating Handbook (POH).

 CAUTION: AIR TRAPPED IN THE PROPELLER HYDRAULIC CYLINDER WILL CAUSE PITCH CONTROL TO BE IMPRECISE AND CAN CAUSE PROPELLER SURGING.

 (3) Cycle the propeller control through the operating blade range from low pitch (or reverse), to high pitch (or as specified in the POH).
(a) Repeat this step at least three times.

NOTE: Cycling the propeller control purges air from the propeller hydraulic system and introduces warm oil to the cylinder.

(4) Check the propeller speed control and operation from low pitch (or reverse) to high pitch using the procedure specified in the POH.

(a) Perform all ground functional, feathering, and cycling checks with the minimum propeller RPM drop required to demonstrate the function.

1. A typical RPM drop for a feathering propeller is 300-500 RPM.
2. A typical RPM drop for a non-feathering propeller is 100-300 RPM.

WARNING: ABNORMAL VIBRATION CAN BE AN INDICATION OF A FAILING PROPELLER BLADE OR BLADE RETENTION COMPONENT. AN IN-FLIGHT BLADE SEPARATION CAN RESULT IN DEATH, SERIOUS BODILY INJURY, AND/OR SUBSTANTIAL PROPERTY DAMAGE.

(5) Check for any abnormal vibration during this run-up.

(a) If vibration occurs, shut the engine down, determine the cause, and correct it before further flight.

1. Refer to the section, “Vibration” in the Testing and Troubleshooting chapter of this manual to determine the cause/correction for the vibration.

(6) Shut down the engine in accordance with the POH.

(7) For additional inspection information (including possible corrections), refer to the section, “Inspection Procedures” in this chapter, and/or the Testing and Troubleshooting chapter of this manual.

(8) Refer to the POH and the airframe manufacturer’s manual for additional operational checks.

B. Post-Run Check

(1) After engine shutdown, check propeller for signs of grease/oil leakage.
C. Propeller Ice Protection System

(1) Refer to the Anti-ice and De-ice Systems chapter in this manual for operational checks and troubleshooting information for Hartzell Propeller Inc. ice protection systems.

3. Required Periodic Inspections and Maintenance (Rev. 1)

CAUTION: INSTRUCTIONS AND PROCEDURES IN THIS SECTION MAY INVOLVE PROPELLER CRITICAL PARTS. REFER TO THE INTRODUCTION CHAPTER OF THIS MANUAL FOR INFORMATION ABOUT PROPELLER CRITICAL PARTS. REFER TO THE ILLUSTRATED PARTS LIST CHAPTER OF THE APPLICABLE OVERHAUL MANUAL(S) FOR THE IDENTIFICATION OF SPECIFIC PROPELLER CRITICAL PARTS.

A. Periodic Inspection

(1) Perform the following inspection procedures at 100 hour intervals, not to exceed twelve (12) calendar months. Procedures involved in these inspections are detailed below.

(a) Inspection and maintenance specified by an airframe manufacturer’s maintenance program and approved by the applicable airworthiness agency may not coincide with the inspection time intervals specified.

In this situation, the airframe manufacturer’s schedule may be applied as long as the calendar limit for the inspection interval does not exceed twelve (12) months.

(b) For additional inspection information (including possible corrections), refer to the section, “Inspection Procedures” in this chapter, and/or the Testing and Troubleshooting chapter of this manual.

(2) Remove the spinner dome.
(3) Visually examine the propeller blades (lead edge, trail edge, face, and camber sides) for nicks, gouges, erosion, cracks, etc.
 (a) Refer to the section, "Composite Blades" in the Maintenance Practices chapter of this manual for damage evaluation and repair information.
(4) Visually examine all visible propeller parts for cracks, wear, or unsafe conditions.
(5) Examine the propeller for grease/oil leakage in accordance with the section, “Grease/Oil Leakage” in this chapter.
(6) If a blade track problem is suspected, check the blade track in accordance with the section, “Blade Track” in this chapter.
(7) If an anti-ice system is installed, clean or replace the anti-ice system filter.
(8) Make an entry in the propeller logbook about completion of these inspections.

B. Periodic Maintenance
 (1) Lubricate the propeller assembly.
 (a) Refer to the section, “Lubrication” in the Maintenance Practices chapter of this manual for intervals and procedures.

C. Periodic Coin-Tap Inspections for Composite Blades
 (1) Perform a coin-tap inspection of the exposed section of the blade at intervals not to exceed 1200 flight hours.
 (2) Perform a coin-tap inspection of the erosion shield surface at intervals not to exceed 600 flight hours.
 (3) Refer to Hartzell Propeller Inc. Composite Blade Field Maintenance and Minor Repair Manual 170 (61-13-70) for the coin-tap inspection procedure.
D. Airworthiness Limitations

(1) Certain components, as well as the entire propeller may have specific life limits established as part of the certification by the FAA. Such limits call for mandatory replacement of specified parts after a defined number of hours and/or cycles of use.

(2) Life limited component times may exist for the propeller models covered in this manual. Refer to the Airworthiness Limitations chapter of this manual.

(3) Operators are urged to keep informed of airworthiness information via Hartzell Propeller Inc. Service Bulletins and Service Letters, which are available from Hartzell distributors or from Hartzell by subscription. Selected information is also available on Hartzell Propeller’s website at www.hartzellprop.com.

E. Overhaul Periods

(1) In flight, the propeller is constantly subjected to vibration from the engine and the airstream, as well as high centrifugal forces.

(2) The propeller is also subject to corrosion, wear, and general deterioration due to aging. Under these conditions, metal fatigue or mechanical failures can occur.

(3) To protect your safety, your investment, and to maximize the safe operating lifetime of your propeller, it is essential that a propeller be properly maintained and overhauled according to the recommended service procedures.

(a) For Hartzell Propeller Inc. propeller overhaul periods, refer to Hartzell Propeller Inc. Service Letter HC-SL-61-61Y.
4. **Inspection Procedures**

A. **Blade Damage** (Rev. 1)

 (1) Refer to the applicable section, Aluminum/Composite Blades in the Maintenance Practices chapter of this manual for damage evaluation and repair information.

B. **Oil Leakage**

 WARNING 1: UNUSUAL OR ABNORMAL RED DYED OIL LEAKAGE, WHEN THE CONDITION INITIATED SUDDENLY, CAN BE AN INDICATION OF A FAILING PROPELLER HUB. A FAILED PROPELLER HUB MAY LEAD TO AN INFLIGHT BLADE SEPARATION WHICH COULD RESULT IN DEATH, SERIOUS BODILY INJURY, AND/OR SUBSTANTIAL PROPERTY DAMAGE.

 UNUSUAL OR ABNORMAL RED DYED OIL LEAKAGE DEMANDS IMMEDIATE INSPECTION FOR A POSSIBLE CRACKED HUB.

 WARNING 2: A RED DYED OIL LEAK MAY INDICATE A HUB FRACTURE CONDITION THAT MAY LEAD TO BLADE SEPARATION. IF A LEAK BECOMES EVIDENT WHILE ON THE GROUND, THE SOURCE OF THE LEAK MUST BE DETERMINED BEFORE FURTHER FLIGHT. IF A LEAK BECOMES EVIDENT WHILE IN FLIGHT AND ESPECIALLY IF IT IS ACCOMPANIED BY INCREASED VIBRATION, THE PILOT SHOULD PROCEED TO AN EARLY LANDING AND DETERMINE THE SOURCE OF THE LEAK BEFORE FURTHER FLIGHT.
WARNING 3: ONE SOURCE OF RED DYED OIL LEAKAGE MAY BE AT THE HUB AND BLADE PARTING LINE. AN OIL LEAK AT THIS LOCATION MAY INDICATE EITHER AN O-RING FAILURE OR A HUB FRACTURE. CAREFUL INSPECTION MUST BE PERFORMED TO PROPERLY DETERMINE THE SOURCE OF THE LEAK BEFORE FURTHER FLIGHT.

(1) Remove the spinner dome.

CAUTION: PERFORM A VISUAL INSPECTION WITHOUT CLEANING THE PARTS. A TIGHT CRACK IS OFTEN EVIDENT DUE TO TRACES OF RED DYED OIL EMANATING FROM THE CRACK OR A RED STAIN ON THE HUB SURFACE. CLEANING CAN REMOVE SUCH EVIDENCE AND MAKE A CRACK VIRTUALLY IMPOSSIBLE TO SEE.

(2) Perform a visual inspection for cracks in the hub. A crack may be readily visible, or may be indicated by red dyed oil leaking from a seemingly solid surface, or a red stain on the hub surface.

 (a) If red dyed oil leakage is found, proceed to the Testing and Troubleshooting chapter of this manual.

(3) Perform a visual inspection for red dyed oil seeping around the cylinder flange where it attaches to the hub or the cylinder attaching screws.

 (a) If red dyed oil leakage is found, proceed to the Testing and Troubleshooting chapter of this manual.

(4) Visually inspect the hub parting line for red dyed oil seeping or a red stain to the sealant between the hub halves.

 (a) If red dyed oil leakage is found, proceed to the Testing and Troubleshooting chapter of this manual.
One Blade in a Horizontal Position

Remove Oil Level Check Screw

Blade Rotated 15 Degrees Above the Horizontal Position

Oil Level Check Hole

15 degrees

Oil Level Check - 3 Blade Propeller

Figure 5-1
(5) Visually inspect the blade retention areas of the hub for red dyed oil seeping past the blade O-ring.
 (a) If red dyed oil leakage is found, proceed to the Testing and Troubleshooting chapter of this manual.
(6) Visually inspect the face and camber side of the blade for evidence of red dyed oil.
 (a) If red dyed oil leakage is found, proceed to the Testing and Troubleshooting chapter of this manual.
(7) Wipe the blades with a clean white cloth. Red dyed oil leakage will appear on the cloth as a red stain.
 (a) If red dyed oil leakage is found, proceed to the Testing and Troubleshooting chapter of this manual.
(8) Contact Hartzell Propeller Inc. Product Support if sudden or significant red dyed oil leakage is found.
(9) Contact Hartzell Propeller Inc. Product Support if sudden or significant propeller imbalance is noticed. Inspect for red dyed oil leakage and determine its source.
(10) If cracks are suspected, additional inspections must be performed before further flight. These inspections must be performed by qualified personnel at a certified propeller repair station with the appropriate rating to verify the condition. Such inspections typically include disassembly of the propeller followed by inspection of the parts, using non-destructive methods in accordance with published procedures.
(11) If cracks or failing components are found, parts must be replaced before further flight. Report such incidents to airworthiness authorities and Hartzell Propeller Inc. Product Support.
C. Oil Level Check Procedure - 3 Blade Only
(1) Three of the cylinder attaching holes are through drilled to permit inspection of the oil level in the hub.
(2) Rotate the propeller so one blade is in a horizontal position.
(3) Remove the screw and O-ring from the through drilled hole opposite the blade that is in the horizontal position. Refer to Figure 5-1.
Remove Oil Level Check Screw

Remove Oil Level Vent Screw

90° Rotation is Maximum Rotation for Blade 1 Before Oil Seepage Must Be Seen From Check Hole

Visually Examine the Oil Level Check Hole for Oil Seepage

Oil Level Check - 5 Blade Propeller

Figure 5-2
(4) When the screw is removed, red dyed oil should leak from the hole.

(a) If red dyed oil leaks from the hole:
 1. Remove sealant from threads of screw.
 2. Using approved solvent, clean the threads of the screw and the threads of the hole.
 3. Using threadlocker CM116, apply a layer to the threads of the previously removed screw.
 4. Put the screw in the hole and torque the screw 60 In-Lbs (6.7 N•m).
 5. If the red dyed oil leak continues for more than 10 hours after the oil level check, the propeller must be disassembled and inspected at a certified propeller repair station with the appropriate rating for the cause of the red dyed oil leak.
 6. If the red dyed oil leak has stopped, no further action is required.

(b) If red dyed oil does not leak from hole:
 1. Rotate the blade 15 degrees in a upward direction.
 2. If red dyed oil, leaks from the hole, perform steps 4.C.(4)(a)1 through 4.C.(4)(a)4.
 3. If red dyed oil does not leak from the hole, the propeller must be disassembled and inspected at a certified propeller repair station with the appropriate rating for the cause of the red dyed oil leak.
D. Oil Level Check Procedure - 5 Blade Only - Refer to Figure 5-2.

WARNING: A RED DYED OIL LEAK MAY INDICATE A HUB FRACTURE CONDITION THAT MAY LEAD TO BLADE SEPARATION. IF A LEAK BECOMES EVIDENT WHILE ON THE GROUND, THE SOURCE OF THE LEAK MUST BE DETERMINED BEFORE FURTHER FLIGHT. IF A LEAK BECOMES EVIDENT WHILE IN FLIGHT AND ESPECIALLY IF IT IS ACCOMPANIED BY INCREASED VIBRATION, THE PILOT SHOULD PROCEED TO AN EARLY LANDING AND DETERMINE THE SOURCE OF THE LEAK BEFORE FURTHER FLIGHT.

(1) Five of the cylinder attaching holes are through drilled to permit inspection of the oil level in the hub.
(2) Put the propeller so that one blade is in a vertical position.
(3) Identify this as blade 1.
(4) Identify the first blade clockwise from blade 1 as blade 2.
(5) Remove each cap head screw with O-ring from the two through drilled holes on the opposite sides of blade 1.
(6) The oil level check hole is the hole counterclockwise of blade 1.
(7) The oil level vent hole is the hole clockwise of blade 1.
(8) Slowly rotate blade 1 in a counterclockwise direction.
(9) Using a light source, visually examine the oil level check hole for oil seepage.

NOTE: The oil in the hub is very thick and will be visible in the oil level check hole before it seeps out.

(a) If oil is visible in the oil level check hole before blade 1 is in a horizontal position:
 1. Rotate blade 1 back to the vertical position.
 2. Remove sealant from the threads of the screw.
3 Using approved solvent, clean the threads of the screw and the threads of the hole.
4 Using threadlocker CM116, apply a layer to the threads of the previously removed screw.
5 Put the screw in the hole and torque the screw to 60 In-Lbs (6.7 N•m).
6 Repeat for each screw.

(b) If blade 1 is in a horizontal position and oil is not visible in the oil level check hole, contact Hartzell Propeller Inc. Product Support department.

E. Vibration (Rev. 1)

NOTE: Vibration may originate in the engine, propeller, or airframe. Troubleshooting procedures typically begin with an investigation of the engine. Airframe components, such as engine mounts or loose landing gear doors, can also be the source of vibration. When investigating an abnormal vibration, the blades and the blade retention components should be considered as potential sources of the vibration.

(1) Important Information

(a) Instances of abnormal vibration should be investigated immediately. If the cause of the vibration is not readily apparent, examine the propeller in accordance with the instructions in this section.

(b) Perform troubleshooting and evaluation of possible sources of vibration in accordance with engine or airframe manufacturer’s instructions.

(c) Refer to the section, “Vibration” in the Testing and Troubleshooting chapter of this manual.

1 Perform the checks to determine possible cause of the vibration.

a If no cause is found, the propeller could be the source of the vibration. Examine the propeller in accordance with the Inspection steps in this section.
(2) Inspection

(a) Remove the spinner dome.

(b) Visually examine the hub, blades, and blade clamps (if applicable) for cracks.
 1 Pay particular attention to the blade retention areas of an aluminum hub, or the blade clamps on steel hub propellers.
 2 A crack may be readily visible, or may be indicated by oil leaking from a seemingly solid surface or a red stain on the hub surface.

(c) If cracks are suspected, additional inspections must be performed to evaluate the condition before further flight.
 1 These inspections typically include disassembly of the propeller, followed by inspection of parts, using nondestructive methods in accordance with published procedures.
 2 These inspections must be performed at a certified propeller repair station with the appropriate rating.

(d) Inspect the movement of the propeller blades in accordance with the section, “Loose Blades” in this chapter.

(e) Inspect blade track in accordance with the section, “Blade Track” in this chapter.

 CAUTION: DO NOT USE BLADE PADDLES TO TURN BLADES.
 1 Manually (by hand) attempt to turn the blades (change pitch).
 2 Visually check for damaged blades.
(f) If abnormal blade conditions or damage are found, additional inspections must be performed to evaluate the condition before further flight.

1 These inspections must be performed at a certified propeller repair station with the appropriate rating.

(g) If cracks or failing components are found, these parts must be replaced before further flight.

1 Report such occurrences to airworthiness authorities and Hartzell Propeller Inc. Product Support.
Checking Blade Track
Figure 5-3
F. Blade Track

(1) Check blade track as follows:

(a) Chock the aircraft wheels securely.

(b) Refer to Figure 5-3. Put a fixed reference point beneath the propeller, within 0.25 inch (6.00 mm) of the lowest point of the propeller arc.

1 This reference point may be a flat board with a sheet of paper attached to it. The board may then be blocked up to within 0.25 inch (6.00 mm) of the propeller arc.

WARNING: MAKE SURE THAT THE ENGINE MAGNETO IS GROUNDED (OFF) BEFORE ROTATING THE PROPELLER.

(c) Rotate the propeller by hand (opposite the direction of normal rotation) until a blade points directly at the paper. Mark the position of the blade tip in relation to the reference surface (paper).

(d) Repeat this procedure with the remaining blades.

(e) Tracking tolerance is ± 0.125 inch (3.18 mm) or 0.250 inch (6.35 mm) total.

(f) Possible Correction

1 Remove foreign matter from the propeller mounting flange.

2 If no foreign matter is present, refer to a certified propeller repair station with the appropriate rating.
Blade Movement
Figure 5-4
G. Loose Blades

(1) Refer to Figure 5-4. Limits for blade looseness are as follows:

(a) In And Out Play None permitted
(b) Radial Play ± 0.5 degree
 ± 0.5 degree total - measured at reference station
(c) Blade End Play ± 0.09 inch (2.28 mm)
 ± 0.09 inch (2.28 mm) total
(d) Fore And Aft Play ± 0.19 inch (4.82 mm)
 ± 0.19 inch (4.82 mm) total
(e) Blades are intended to be tight in the propeller, but slight movement is permitted.
(f) Blades with too much movement must be referred to a certified propeller repair station with the appropriate rating.

(2) Procedure for blade fore and aft play inspection.

(a) Measure or find a location on the blade approximately 12.0 inches (304 mm) inboard of the blade tip.
(b) Using fingers and light pressure 12.0 inches (304 mm) inboard of the blade tip, push the blade aft until movement stops.
(c) Mark the position of the blade tip in relation to the paper.
(d) Using fingers and light pressure 12.0 inches (304 mm) inboard of the blade tip, push the blade forward until movement stops.
(e) Mark the position of the blade tip in relation to the paper.
(f) Measure the amount of movement between the two locations.
(g) If the amount of movement is greater than the limits specified, the propeller must be referred to a certified propeller repair station with the appropriate rating.
H. Corrosion (Rev. 1)

WARNING: REPAIR THAT INVOLVES COLD WORKING THE METAL, RESULTING IN CONCEALMENT OF A DAMAGED AREA IS NOT PERMITTED.

(1) Corrosion of any type on the hub or heavy corrosion on other parts that results in severe pitting must be referred to a certified propeller repair station with the appropriate rating.

I. Spinner Damage (Rev. 1)

(1) Inspect the spinner for cracks, missing hardware, or other damage.

(a) Metal Spinners

1. For damage evaluation and repair information, refer to Hartzell Propeller Inc. Manual 127 (61-16-27) or a certified propeller repair station with the appropriate rating.

2. Contact the local airworthiness authority for repair approval.

(b) Composite Spinners

1. For damage evaluation and repair information, refer to Hartzell Propeller Inc. Manual 173 (61-10-73) or a certified propeller repair station with the appropriate rating.

2. Contact the local airworthiness authority for repair approval.

J. Propeller Ice Protection Systems (Rev. 1)

(1) Refer to the Anti-ice and De-ice Systems chapter of this manual for operational checks and troubleshooting information.
K. UID Plate Inspection

(1) Specific installations require selected aircraft components to have a unique identification that is compatible with Military Standard MIL-STD-130M.

(2) The UID plate incorporates a laser etched scan code to identify the manufacturer's cage code, propeller IDS/item number, and propeller serial number.

(3) The cage code, propeller IDS/item number, and serial number are also laser etched on the UID plate.

(4) On a propeller, the UID plate is located on the balance ring attached to the cylinder on the propeller.

(5) On a governor, the UID identification is laser etched on the governor head cap.

(6) If the UID plate is found at any time to be damaged, the scan code is visibly damaged, or the scan code is not scannable, remove the UID plate from service.

 (a) Mark the location of the UID plate on the balance ring.

 (b) Remove and discard the safety wire.

 (c) Remove the screws, washers, and nut.

 (d) Contact Hartzell Propeller Inc. Product Support for replacement UID plate.

 (e) The UID plate is also used as a static balance weight. Do not remove the UID plate until a replacement plate is received.
Reciprocating Engine Overspeed Limits

Figure 5-5

Percent Overspeed -- Reciprocating Engines Only

110%

105%

103%

Requires Evaluation by a Certified Propeller Repair Station with the Appropriate Rating.

No Action Required

Duration of Overspeed

20 Sec 1 min 3 min 5 min
5. **Special Inspections (Rev. 1)**

CAUTION: INSTRUCTIONS AND PROCEDURES IN THIS SECTION MAY INVOLVE PROPELLER CRITICAL PARTS. REFER TO THE INTRODUCTION CHAPTER OF THIS MANUAL FOR INFORMATION ABOUT PROPELLER CRITICAL PARTS. REFER TO THE ILLUSTRATED PARTS LIST CHAPTER OF THE APPLICABLE OVERHAUL MANUAL(S) FOR THE IDENTIFICATION OF SPECIFIC PROPELLER CRITICAL PARTS.

A. Overspeed

(1) An overspeed occurs when the propeller RPM exceeds the maximum RPM stated in the applicable Aircraft Type Certificate Data Sheet. The duration of time and magnitude of overspeed for a single event determines the corrective action that must be taken to make sure no damage to the propeller has occurred.

(2) The criteria for determining the required action after an overspeed are based on many factors. The additional centrifugal forces that occur during overspeed are not the only concern. Some applications have sharp increases in vibratory stresses at RPMs above the maximum rated for the airframe/engine/propeller combination.

(a) When a propeller installed on a reciprocating engine has an overspeed event, refer to the Reciprocating Engine Overspeed Limits (Figure 5-5) to determine the corrective action to be taken.

(b) If an overspeed requiring propeller evaluation occurs on an aircraft using a Hartzell Propeller Inc. governor, the governor must be evaluated by a certified propeller repair station with the appropriate rating.

(c) Make a record of the overspeed event in the propeller logbook, indicating any corrective action(s) taken.
B. Lightning Strike - Propeller Assembly (Rev. 1)

CAUTION 1: REFER TO THE ENGINE AND AIRFRAME MANUFACTURER’S MANUALS FOR ADDITIONAL INSPECTIONS TO PERFORM AFTER A PROPELLER LIGHTNING STRIKE.

CAUTION 2: A COMPOSITE BLADE SUSPECTED OF LIGHTNING STRIKE MUST BE INSPECTED AND MAY REQUIRE OVERHAUL.

NOTE: Lightning usually enters the propeller through the metal erosion shield or the stainless steel mesh (if applicable) of a blade. The charge typically enters at the tip of the blade and travels through the erosion shield toward the hub. The charge exits the erosion shield at the inboard end and enters the next conductive element in the path.

(1) General

(a) In the event of a propeller lightning strike, an inspection is required before further flight.

(b) If the propeller meets the requirements of the “Temporary Operation Inspection” in this section, 10 hours of operation is permitted before propeller disassembly/inspection must be performed.

(2) Temporary Operation Inspection

(a) Remove the spinner dome and perform a visual inspection of the propeller, blades, spinner, and ice protection system for evidence of damage that would require repair before flight (such as broken wires or arcing damage to propeller hub).

1 A lightning strike indication may appear as a darkened area in proximity of the tip and at the most inboard end of the metal erosion shield.

2 Other indications include: debonding, lifting or buckling of the erosion shield, and splitting or delamination of the composite material.
(b) Perform visual and coin-tap inspections of the blades that have lightning strike indications in accordance with Hartzell Propeller Inc. Composite Blade Field Maintenance and Minor Repair Manual 170 (61-13-70).

1. If the damage is within the airworthy damage limits specified in Manual 170, temporary operation for up to 10 flight hours is permitted before propeller disassembly and inspection.

2. If the damage is not within the airworthy damage limits specified in Manual 170, temporary operation is not permitted. The propeller must be removed from the aircraft, disassembled, evaluated, and/or repaired by a certified propeller repair station with the appropriate rating before further flight.

(c) Perform an operational check of the propeller ice protection system (if installed) in accordance with the Anti-ice and De-ice Systems chapter of this manual.

(d) Make a record of the lightning strike in the propeller logbook, indicating any corrective action(s) taken.

(3) For flight beyond the 10-hour temporary operation limit:

(a) The propeller must be removed from the aircraft, disassembled, evaluated, and/or repaired by a certified propeller repair station with the appropriate rating.

C. Lightning Strike - Electrically Actuated Governor

CAUTION: REFER TO THE ENGINE AND AIRFRAME MANUFACTURER’S MANUALS FOR ADDITIONAL INSPECTIONS TO PERFORM AFTER A AIRCRAFT LIGHTNING STRIKE.

(1) General

(a) In the event of a propeller or aircraft lightning strike, an inspection is required before further flight.

(2) Perform the Initial Run-Up procedure in accordance with the section, “Operational Checks” in this chapter.

(3) If the propeller fails to cycle throughout its operating range, replace the electrically actuated governor.
D. Foreign Object Strike/Ground Strike (Rev. 1)

(1) General

(a) A foreign object/ground strike can include a broad spectrum of damage, from a minor stone nick to severe ground impact damage.

1 A conservative approach in evaluating the damage is required because there may be hidden damage that is not readily apparent during an on-wing, visual inspection.

(b) A foreign object/ground strike is defined as:

1 Any incident, whether or not the engine is operating, that requires repair to the propeller other than minor dressing of the blades.

a Examples of foreign object/ground strike include situations where an aircraft is stationary and the landing gear collapses causing one or more blades to be significantly damaged, or where a hangar door (or other object) strikes the propeller blade(s).

b These cases should be handled as foreign object/ground strikes because of potentially severe side loading on the propeller hub, blades, and retention bearings.

2 Any incident during engine operation in which the propeller impacts a solid object that causes a drop in revolutions per minute (RPM) and also requires structural repair of the propeller (incidents requiring only paint touch-up are not included). This is not restricted to propeller strikes against the ground.

3 A sudden RPM drop while impacting water, tall grass, or similar yielding medium, where propeller blade damage is not normally incurred.

(c) In the event of a foreign object/ground strike, an inspection is required before further flight.
(2) Inspection Procedure

(a) Examine the propeller assembly for damage related to the foreign object/ground strike.

(b) If any of the following indications are found, the propeller must be removed from the aircraft, disassembled, and overhauled by a certified propeller repair station with the appropriate rating.

1. Blade(s) damaged, bent, or out of track/angle
2. Blade(s) loose in the hub (if applicable)
 a. Refer to the section, “Loose Blades” in this chapter for the permitted limits of blade movement.
3. Blade(s) rotated in the clamp (if applicable)
4. Any noticeable or suspected damage to the pitch change mechanism
5. Any blade diameter reduction
6. Bent, cracked, or failed engine shaft
7. Vibration during operation
 (that was not present before the event).

(c) Composite Blades: Perform a thorough visual inspection and a coin-tap inspection of each blade (including the metal erosion shield) in accordance with Hartzell Propeller Inc. Composite Blade Field Maintenance and Minor Repair Manual 170 (61-13-70).

1. If the blade damage is not within the airworthy damage limits, the blade(s) must be repaired before further flight.

 NOTE: It is not necessary to remove the de-ice/anti-icing boot for this inspection.
(d) Engine mounted components - such as governors, pumps, etc. may be damaged by a foreign object strike, especially if the strike resulted in a sudden stoppage of the engine.

1. These components should be inspected and repaired in accordance with the applicable component maintenance manual.

(e) Make a record of the foreign object/ground strike event in the propeller logbook, indicating any corrective action(s) taken.

E. Fire/Heat Damage (Rev. 1)

WARNING: HIGH TEMPERATURES CAN CAUSE SERIOUS DAMAGE TO PROPELLER HUBS, CLAMPS, AND BLADES (ALUMINUM AND COMPOSITE). THIS DAMAGE CAN RESULT IN CATASTROPHIC FAILURE CAUSING DEATH, SERIOUS BODILY INJURY, AND/OR SUBSTANTIAL PROPERTY DAMAGE.

1. A propeller that has been exposed to fire or high temperatures, such as an engine or hangar fire, must be inspected by a certified propeller repair station with the appropriate rating before further flight.

F. Sudden Stoppage (Rev. 1)

1. When there is a propeller sudden stoppage because of catastrophic engine failure or seizure, the propeller and any engine driven/powered accessory must be inspected and repaired in accordance with the applicable component maintenance manual.

2. If the sudden stoppage was caused by a foreign object strike, refer to the section, “Foreign Object/Ground Strike” in this chapter.
G. Engine Oil Contamination (Rev. 1)

(1) Following an incident of oil contamination, the components of the propeller that were exposed to oil contamination must be removed, cleaned, and inspected.

(a) A propeller that was exposed to oil contamination must be removed and sent to a certified propeller repair station with the appropriate rating for disassembly, cleaning, and inspection.

(b) A governor that was exposed to oil contamination must be inspected and repaired in accordance with the applicable component maintenance manual.

6. Long Term Storage

A. Important Information

(1) Parts shipped from Hartzell Propeller Inc. are not shipped or packaged in a container that is designed for long term storage.

(2) Long term storage procedures may be obtained by contacting a Hartzell distributor, or the Hartzell Propeller Inc. Product Support Department.

(a) Refer to the Introduction chapter of this manual for contact information.

(b) Storage information is also detailed in Hartzell Propeller Inc. Standard Practices Manual 202A (61-01-02).

(3) Information regarding the return of a propeller assembly to service after long term storage may be obtained by contacting a Hartzell distributor, or the Hartzell Propeller Inc. Product Support Department.

(a) Refer to the Introduction chapter of this manual for contact information.

(b) This information is also detailed in Hartzell Propeller Inc. Standard Practices Manual 202A (61-01-02).
B. Composite Blades

(1) In addition to the long term storage requirements specified in Hartzell Propeller Inc. Standard Practices Manual 202A (61-01-02), the maximum permitted storage temperature for Hartzell Propeller Inc. composite blades is 180°F (82°C).
MAINTENANCE PRACTICES - CONTENTS

1. Cleaning ... 6-3
 A. General Cleaning ... 6-3
 B. Spinner Cleaning and Polishing ... 6-5
2. Corrosion Inhibitor .. 6-7
 A. Application Intervals .. 6-7
 B. Application Procedure ... 6-8
3. Accumulator Air Charge ... 6-9
 A. Charging an Electrically Actuated Hartzell Accumulator 6-9
4. Composite Blades ... 6-11
 A. Inspection Requirements .. 6-11
 B. Damage Evaluation and Repair Limits .. 6-11
 C. Blade Repairs .. 6-11
5. Blade Paint Touch-Up ... 6-12
 A. Important Information .. 6-12
 B. Paint ... 6-13
 C. Procedure .. 6-14
6. Dynamic Balance .. 6-17
 A. Overview .. 6-17
 B. Inspection Procedures Before Dynamic Balancing 6-18
 C. Placement of Dynamic Balance Weights for Dynamic Balance 6-19
 D. Modifying Spinner Bulkhead to Accommodate Dynamic Balance Weights 6-20
7. Propeller Low Pitch Setting .. 6-22
 A. Low Pitch Stop - All Propeller Models .. 6-22
 B. Max. RPM (Static) Low Pitch Stop Adjustment .. 6-23
8. Propeller High Pitch Settings .. 6-30
 A. High Pitch (Minimum RPM) Stop Adjustment .. 6-30
9. Erosion Tape on Composite Blades .. 6-30
 A. General .. 6-30
MAINTENANCE PRACTICES - CONTENTS

10. Propeller Ice Protection Systems .. 6-30
 A. Maintenance Information ... 6-30

11. Tachometer Calibration .. 6-31
 A. Important Information ... 6-31
 B. Tachometer Calibration .. 6-32

LIST OF ILLUSTRATIONS

Applying Corrosion Inhibitor CM352 Figure 6-1 6-6
Unfeathering Accumulator Figure 6-2 6-9
Low Pitch Stop Adjustment () (A,B)1
Series Three Blade Propellers Figure 6-3 6-23
Low Pitch Stop Adjustment () (A,B)1
Series Five Blade Propellers Figure 6-4 6-25
Low Pitch Stop Adjustment () (A,B)2 Series
That Use a One-piece Spinner Dome Figure 6-5 6-28

LIST OF TABLES

Air Charge Pressure .. Table 6-1 6-10
Touch-up Paints ... Table 6-2 6-13
1. **Cleaning** (Rev. 1)

CAUTION 1: INSTRUCTIONS AND PROCEDURES IN THIS SECTION MAY INVOLVE PROPELLER CRITICAL PARTS. REFER TO THE INTRODUCTION CHAPTER OF THIS MANUAL FOR INFORMATION ABOUT PROPELLER CRITICAL PARTS. REFER TO THE ILLUSTRATED PARTS LIST CHAPTER OF THE APPLICABLE OVERHAUL MANUAL(S) FOR THE IDENTIFICATION OF SPECIFIC PROPELLER CRITICAL PARTS.

CAUTION 2: BEFORE CLEANING THE PROPELLER, BE SURE THE PROPELLER HAS BEEN INSPECTED IN ACCORDANCE WITH THE REQUIRED PERIODIC INSPECTIONS SPECIFIED IN THIS MANUAL. CLEANING THE PROPELLER PRIOR TO INSPECTION MAY REMOVE EVIDENCE OF A CONDITION THAT REQUIRES CORRECTIVE ACTION.

CAUTION 3: DO NOT USE PRESSURE WASHING EQUIPMENT TO CLEAN THE PROPELLER OR CONTROL COMPONENTS. PRESSURE WASHING CAN FORCE WATER AND/OR CLEANING SOLVENTS PAST SEALS, AND CAN LEAD TO INTERNAL CORROSION OF PROPELLER COMPONENTS.

A. General Cleaning

CAUTION 1: WHEN CLEANING THE PROPELLER, DO NOT ALLOW SOAP OR SOLVENT SOLUTIONS TO RUN OR SPLASH INTO THE HUB AREA.

CAUTION 2: DO NOT CLEAN THE PROPELLER WITH CAUSTIC OR ACIDIC SOAP SOLUTIONS. IRREPARABLE CORROSION OF PROPELLER COMPONENTS MAY OCCUR.

(1) Remove the spinner dome in accordance with the Installation and Removal chapter in this manual.
WARNING: ADHESIVES AND SOLVENTS ARE FLAMMABLE AND TOXIC TO THE SKIN, EYES AND RESPIRATORY TRACT. SKIN AND EYE PROTECTION ARE REQUIRED. AVOID PROLONGED CONTACT. USE IN WELL VENTILATED AREA.

CAUTION: DO NOT USE ANY SOLVENT DURING CLEANING THAT COULD SOFTEN OR DESTROY THE BOND BETWEEN CHEMICALLY ATTACHED PARTS.

(2) Using a clean cloth dampened with Stoddard solvent CM23 or equivalent, wipe the inside of the spinner dome to remove grease, oil, and other residue.
(a) Immediately dry the inside of the spinner dome using a clean dry cloth.

(3) Using a clean cloth dampened with Stoddard solvent CM23 or equivalent, wipe the accessible surfaces of the hub, counterweight clamps, slip ring, and bulkhead to remove grease, oil, and other residue.

(4) Fill a tank sprayer with a non-caustic/non-acidic soap solution.

IMPORTANT: WHEN PERFORMING STEPS 5 THRU 7, THE BLADE(S) TO BE CLEANED MUST POINT DOWNWARD. THIS WILL PREVENT THE SOAP SOLUTION AND/OR CONTAMINANTS FROM FLOWING INTO THE HUB/BLADE SEAL AREA.

CAUTION: DO NOT LET THE SOAP SOLUTION DRY ON THE SURFACES OF THE HUB, BULKHEAD, OR SLIP RING.

(5) Using the tank sprayer, apply a fine mist of the soap solution to the surfaces of the downward facing blades, and the hub, bulkhead, and slip ring around the downward facing blades.
(a) Use a cloth or soft nylon brush to loosen dirt and unwanted material on the surfaces where the soap solution was applied, particularly on the inboard surface of the counterweight clamp.
(6) Using clean potable water at low pressure, rinse the surfaces where the soap solution was applied to remove dirt, unwanted material, and soap residue.

(7) Use a clean dry cloth to dry the surfaces cleaned in the previous steps.

(8) Rotate the propeller so that the next blade(s) to be cleaned are pointing downward, then repeat steps 5 thru 7.
 (a) Repeat steps 5 thru 8 until all blades have been cleaned and dried.

(9) Let the propeller dry.

(10) Install the spinner dome in accordance with the Installation and Removal chapter in this manual.

B. Spinner Cleaning and Polishing

(1) Clean the spinner using the General Cleaning procedures in this section.

(2) If an aluminum spinner dome is installed, polish the dome (if required) with an automotive-type aluminum polish.
Applying Corrosion Inhibitor CM352
Figure 6-1
2. **Corrosion Inhibitor** (Rev. 1)

CAUTION: INSTRUCTIONS AND PROCEDURES IN THIS SECTION MAY INVOLVE PROPELLER CRITICAL PARTS. REFER TO THE INTRODUCTION CHAPTER OF THIS MANUAL FOR INFORMATION ABOUT PROPELLER CRITICAL PARTS. REFER TO THE ILLUSTRATED PARTS LIST CHAPTER OF THE APPLICABLE OVERHAUL MANUAL(S) FOR THE IDENTIFICATION OF SPECIFIC PROPELLER CRITICAL PARTS.

A. Application Intervals

 (1) The bolt-on, steel counterweights on propellers manufactured after the release date of Service Letter HC-SL-61-364 dated April, 3, 2020 will be coated with corrosion inhibitor CM352 by Hartzell Propeller Inc. during the assembly process.

 (a) Corrosion inhibitor CM352 is applied to prevent corrosion on the counterweight.

 (b) Periodic re-application of the corrosion inhibitor CM352 will provide extended protection from corrosion.

1 Hartzell Propeller Inc. recommends re-application of the corrosion inhibitor CM352 at regularly scheduled intervals, similar to the lubrication interval specified in this propeller owner’s manual.
B. Application Procedure

(1) Remove the spinner dome in accordance with the Installation and Removal chapter of this manual.

CAUTION: DO NOT APPLY CORROSION INHIBITOR CM352 ONTO ICE PROTECTION SYSTEM COMPONENTS (TERMINAL STRIPS, BOOTS, HARNESS, ETC.).

(2) Spray the corrosion inhibitor CM352 into a cup or container, then use a soft bristled brush to apply the corrosion inhibitor CM352 to the bolt heads, spring pins, and bolt wells of the counterweight. Refer to Figure 6-1.

(a) Use caution when applying the corrosion inhibitor CM352 around ice protection system components (terminal strips, boots, harnesses, etc.).

(b) Make sure the bolt heads, spring pins, and bolt wells are completely covered by the corrosion inhibitor CM352.

(c) Optionally, corrosion inhibitor CM352 can be applied to all exposed surfaces of the counterweight.

(3) Let the corrosion inhibitor CM352 cure for a minimum of three hours before flight.
3. **Accumulator Air Charge**

 NOTE: For an accumulator that was not manufactured by Hartzell Propeller Inc., refer to the manufacturer’s instructions for charging the accumulator.

 A. Charging an Electrically Actuated Hartzell Accumulator

 WARNING: DO NOT CHARGE THE ACCUMULATOR OR MEASURE THE AIR CHARGE WHILE THE PROPELLER IS IN THE FEATHER POSITION.

 (1) Turn engine master to the ON position to unfeather the propeller, but do not start the engine.

 (2) Be sure the propeller is unfeathered, then turn the engine master to the OFF position.

 ![Unfeathering Accumulator](image-url)
(3) Using proper control, charge the accumulator with dry air or nitrogen.

(a) The air charge valve is located on the accumulator as shown in Figure 6-2.

(b) Nitrogen is the preferred charging medium.

CAUTION: MAKE SURE THAT THE GAUGE IS CALIBRATED BEFORE CHARGING THE CYLINDER OR MEASURING THE AIR PRESSURE.

(c) Use an appropriate tool that has a calibrated gauge to charge the cylinder or measure air pressure in the propeller.

(d) For the correct accumulator charge pressure, refer to Table 6-1.

<table>
<thead>
<tr>
<th>Temperature °F</th>
<th>Temperature °C</th>
<th>PSI ±3</th>
<th>kPa ±21</th>
</tr>
</thead>
<tbody>
<tr>
<td>80 to 100</td>
<td>27 to 38</td>
<td>156</td>
<td>1073</td>
</tr>
<tr>
<td>60 to 80</td>
<td>16 to 27</td>
<td>150</td>
<td>1034</td>
</tr>
<tr>
<td>40 to 60</td>
<td>4 to 16</td>
<td>144</td>
<td>995</td>
</tr>
<tr>
<td>20 to 40</td>
<td>-7 to 4</td>
<td>139</td>
<td>956</td>
</tr>
<tr>
<td>0 to 20</td>
<td>-18 to -7</td>
<td>133</td>
<td>917</td>
</tr>
<tr>
<td>-20 to 0</td>
<td>-29 to -18</td>
<td>127</td>
<td>878</td>
</tr>
<tr>
<td>-40 to -20</td>
<td>-40 to -29</td>
<td>122</td>
<td>839</td>
</tr>
</tbody>
</table>

Air Charge Pressure

Figure 6-1
4. **Composite Blades** (Rev. 1)

 A. Inspection Requirements

 (1) Perform inspections (pre-flight, periodic, lightning strike, etc.) in accordance with the Inspection and Check chapter of this manual.

 B. Damage Evaluation and Repair Limits

 (1) Any defects or damage to a composite blade must be evaluated in accordance with Hartzell Propeller Inc. Composite Propeller Blade Field Maintenance and Minor Repair Manual 170 (61-13-70) to determine if repairs are required before further flight.

 (a) Airworthy damage does not require repair before further flight, but should be repaired as soon as possible to prevent degradation of the damage.

 (b) Unairworthy damage must be repaired before further flight.

 C. Blade Repairs

5. **Blade Paint Touch-Up** (Rev. 1)

CAUTION: INSTRUCTIONS AND PROCEDURES IN THIS SECTION MAY INVOLVE PROPELLER CRITICAL PARTS. REFER TO THE INTRODUCTION CHAPTER OF THIS MANUAL FOR INFORMATION ABOUT PROPELLER CRITICAL PARTS. REFER TO THE ILLUSTRATED PARTS LIST CHAPTER OF THE APPLICABLE OVERHAUL MANUAL(S) FOR THE IDENTIFICATION OF SPECIFIC PROPELLER CRITICAL PARTS.

A. Important Information

(1) Blade paint touch-up on Hartzell propeller blades may be permitted when performed in accordance with the instructions in this section.

(a) **Composite Blades Only:**

1. If the area to be painted is less than 10 sq. inches (6451.6 sq. mm), blade paint touch-up is permitted.

2. If the area to be painted is greater than 10 sq. inches (6451.6 sq. mm), blade paint touch-up is not permitted.

 a. Areas greater than 10 sq. inches (6451.6 sq. mm) require the entire blade to be repainted by a certified propeller repair station with the appropriate rating.
B. Paint

(1) The paints listed in Table 6-2 have been tested by Hartzell Propeller Inc. and are recommended for blade touch-up.

(a) Alternate paints may be used for blade touch-up, but Hartzell Propeller Inc. accepts no responsibility for wear or adhesion-related issues.

<table>
<thead>
<tr>
<th>Vendor</th>
<th>Color/Type</th>
<th>Vendor P/N</th>
<th>Hartzell Propeller Inc. P/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tempo</td>
<td>Epoxy Gray</td>
<td>A-151</td>
<td>A-6741-146-2</td>
</tr>
<tr>
<td>Tempo</td>
<td>Epoxy White (tip stripe)</td>
<td>A-152</td>
<td>A-6741-147-2</td>
</tr>
<tr>
<td>Tempo</td>
<td>Epoxy Yellow (tip stripe)</td>
<td>A-154</td>
<td>A-6741-150-2</td>
</tr>
<tr>
<td>Sherwin-Williams</td>
<td>Black</td>
<td>F75KXB9958-4311</td>
<td>A-6741-145-1</td>
</tr>
<tr>
<td>Sherwin-Williams</td>
<td>Gray</td>
<td>F75KXA10445-4311</td>
<td>A-6741-146-1</td>
</tr>
<tr>
<td>Sherwin-Williams</td>
<td>Gray Metallic</td>
<td>F75KXM9754-4311</td>
<td>A-6741-148-1</td>
</tr>
<tr>
<td>Sherwin-Williams</td>
<td>White (tip stripe)</td>
<td>F75KXW10309-4311</td>
<td>A-6741-147-1</td>
</tr>
<tr>
<td>Sherwin-Williams</td>
<td>Red (tip stripe)</td>
<td>F75KXR12320-4311</td>
<td>A-6741-149-1</td>
</tr>
<tr>
<td>Sherwin-Williams</td>
<td>Yellow (tip stripe)</td>
<td>F75KXY11841-4311</td>
<td>A-6741-150-1</td>
</tr>
<tr>
<td>Sherwin-Williams</td>
<td>Silver Metallic</td>
<td>F75KXS13564-4311</td>
<td>A-6741-163-1</td>
</tr>
<tr>
<td>Sherwin-Williams</td>
<td>Silver</td>
<td>F75KXS13564-4311</td>
<td>A-6741-190-1</td>
</tr>
<tr>
<td>Sherwin-Williams</td>
<td>Bright Red</td>
<td>1326305 or F63TXR16285-4311</td>
<td>A-6741-200-5</td>
</tr>
<tr>
<td>Sherwin-Williams</td>
<td>Bright Yellow</td>
<td>1326313 or F63TXY16286-4311</td>
<td>A-6741-201-5</td>
</tr>
<tr>
<td>Sherwin-Williams</td>
<td>Bright Silver</td>
<td>1334259</td>
<td>A-6741-203-5</td>
</tr>
<tr>
<td>Sherwin-Williams</td>
<td>Prop Gold</td>
<td>F63TXS17221-4311</td>
<td>A-6741-204-5</td>
</tr>
</tbody>
</table>

Touch-up Paints
Table 6-2
(2) Touch-up paint manufacturer’s contact information:

(a) **Tempo Products Company**
 A Plasti-kote Company
 1000 Lake Road
 Medina, OH 44256
 Tel: 800.321.6300
 Fax: 216.349.4241
 Cage Code: 07708

(b) **Sherwin-Williams Company**
 Refer to the Sherwin-Williams Product Finishes Global Finishes Group website at:
 http://oem.sherwin-williams.com

C. Procedure

WARNING: CLEANING AGENTS (ACETONE, #700 LACQUER THINNER, AND MEK), ARE FLAMMABLE AND TOXIC TO THE SKIN, EYES, AND RESPIRATORY TRACT. SKIN AND EYE PROTECTION ARE REQUIRED. AVOID PROLONGED CONTACT. USE IN WELL VENTILATED AREA.

CAUTION: ANY REFINISHING PROCEDURE CAN ALTER PROPELLER BALANCE. PROPellers THAT ARE OUT OF BALANCE MAY EXPERIENCE EXCESSIVE VIBRATIONS WHILE IN OPERATION.

(1) Using a clean cloth moistened with acetone, #700 lacquer thinner, or MEK, wipe the surface of the blade to remove any contaminants.

(2) Permit the solvent to evaporate.
CAUTION 1: EXCESSIVE SANDING ON COMPOSITE BLADES WILL CAUSE “FUZZING” OF THE KEVLAR® MATERIAL. THIS CAN RESULT IN A ROUGH FINISH AND/OR DAMAGE TO THE BLADE.

CAUTION 2: BE SURE TO SAND/FEATHER THE EXISTING COATINGS TO PREVENT EXCESSIVE PAINT BUILDUP.

(3) Using 120 to 180 grit sandpaper, sand to feather the existing coatings away from the eroded or repaired area.

(a) Erosion damage is typically very similar on all blades in a propeller assembly. If one blade has more extensive damage, e.g. in the tip area, sand all the blades in the tip area to replicate the repair of the most severely damaged blade tip. This practice is essential in maintaining balance after refinishing.

(4) Using acetone, #700 lacquer thinner, or MEK, wipe the surface of the blade.

(5) Permit the solvent to evaporate.

(6) Apply masking material to the erosion shield, anti-icing or de-ice boot, and tip stripes, as needed.
WARNING: FINISH COATINGS ARE FLAMMABLE AND TOXIC TO THE SKIN, EYES AND RESPIRATORY TRACT. SKIN AND EYE PROTECTION ARE REQUIRED. AVOID PROLONGED CONTACT. USE IN A WELL VENTILATED AREA.

CAUTION: APPLY FINISH COATING TO UNIFORMLY COVER THE REPAIR/erosion. AVOID EXCESSIVE PAINT BLDUP ALONG THE TRAILING EDGE TO AVOID CHANGING THE BLADE PROFILE AND/OR P-STATIC CHARACTERISTICS.

(7) Apply a sufficient amount of finish coating to achieve 2 to 4 mils thickness when dry.
 (a) Re-coat before 30 minutes, or after 48 hours.
 (b) If the paint is permitted to dry longer than four hours, it must be lightly sanded before another coat is applied.

(8) Remove masking material from the tip stripes and re-apply masking material for the tip stripe refinishing if required.

(9) Apply sufficient tip stripe coating to achieve 2 to 4 mils thickness when dry.
 (a) Re-coat before 30 minutes, or after 48 hours.
 (b) If the paint is permitted to dry longer than four hours, it must be lightly sanded before another coat is applied.

(10) Remove the masking material immediately from the anti-icing or de-ice boot and tip stripes, if applicable.

(11) Optionally, perform dynamic balancing in accordance with the procedures and limitations specified in the Dynamic Balance section of this chapter.
6. Dynamic Balance

CAUTION: INSTRUCTIONS AND PROCEDURES IN THIS SECTION MAY INVOLVE PROPELLER CRITICAL PARTS.REFER TO THE INTRODUCTION CHAPTER OF THIS MANUAL FOR INFORMATION ABOUT PROPELLER CRITICAL PARTS. CONTACT HARTZELL PROPELLER INC. FOR THE IDENTIFICATION OF SPECIFIC PROPELLER CRITICAL PARTS.

A. Overview

CAUTION: IF REFLECTIVE TAPE IS USED FOR DYNAMIC BALANCING, REMOVE THE TAPE IMMEDIATELY AFTER BALANCING IS COMPLETED.

NOTE: Dynamic balance is recommended to reduce vibrations that may be caused by a rotating system (propeller and engine) imbalance. Dynamic balancing can help prolong the life of the propeller, engine, airframe, and avionics.

(1) Dynamic balance is accomplished by using an accurate means of measuring the amount and location of the dynamic imbalance.

(2) The number of dynamic balance weights installed must not exceed the limits specified in this chapter.

(3) Follow the dynamic balance equipment manufacturer's instructions for dynamic balance in addition to the specifications in this chapter.

NOTE: Some engine manufacturers' instructions also contain information about dynamic balance limits.

(4) For a Hartzell Propeller Inc. aluminum bulkhead, dynamic balance weights may be attached with nut plates or with through drilled holes.

(5) For a Hartzell Propeller Inc. composite bulkhead, dynamic balance weights may only be attached with through drilled holes.
(6) For a bulkhead supplied by another manufacturer, refer to the manufacturer's instructions for attachment of dynamic balance weights.

B. Inspection Procedures Before Dynamic Balancing

(1) Visually inspect the propeller assembly before dynamic balancing.

NOTE: The first run-up of a new or overhauled propeller assembly may leave a small amount of oil on the blades and inner surface of the spinner dome.

(a) Using Stoddard solvent (or equivalent), completely remove any oil on the blades or inner surface of the spinner dome.

(b) Visually examine each propeller blade assembly for evidence of oil leakage.

(c) Visually examine the inner surface of the spinner dome for evidence of oil leakage.

(2) If there is evidence of oil leakage, determine the location of the leak and correct.

(3) Static balance is accomplished at a propeller repair station when an overhaul or major repair is performed.

(a) Bantam propeller static balance weights are installed on a balance ring attached to the cylinder of the propeller.

NOTE: If static balancing is not accomplished before dynamic balancing, the propeller may be so severely unbalanced that dynamic balance may be unachievable because of measurement equipment limitations.

(4) Determine if the bulkhead is aluminum or composite.

(5) Determine if the bulkhead has been modified to permit attachment of dynamic balance weights.
C. Placement of Dynamic Balance Weights for Dynamic Balance

CAUTION: DO NOT INSTALL DYNAMIC BALANCE WEIGHTS ON THE BALANCE RING INSTALLED ON THE CYLINDER ON THE FRONT OF THE PROPELLER HUB.

(1) Dynamic balance weights must be added to the spinner bulkhead.

NOTE: Aluminum spinner bulkheads may have factory installed self-locking nut plates provided for this purpose.

(2) Removal of the dynamic balance weights will return the propeller to its original static balance condition.

(3) Use only stainless or plated steel washers as dynamic balance weights on the spinner bulkhead.

(a) A maximum of six AN970 style washers weighing up to approximately 1.0 oz (28.0 g) may be installed at any one location.

NOTE: The dimensions of an AN970 style washer are:
ID 0.203 inch (5.16 mm), OD 0.875 inch (22.23 mm), and thickness 0.063 inch (1.59 mm).

(5) For an aluminum bulkhead:

(a) Install dynamic weights:

1 Use aircraft quality #10-32 screws or bolts when installed with nut plates.

2 Use AN-3() type screws or bolts and self-locking nuts when installed in through drilled holes.

(6) For a composite bulkhead,

(a) Install dynamic weights using aircraft quality AN-3() type screws or bolts and self-locking nuts in through drilled holes.

(b) A stainless or plated steel washer must be used on each side of the bulkhead under the screw and the nut.
Balance weight screws attached to the spinner bulkhead must protrude through the self-locking nuts or nut plates a minimum of one thread and a maximum of four threads.

(a) It may be necessary to alter the number and/or location of static balance weights to achieve dynamic balance.

Unless otherwise specified by the engine or airframe manufacturer, Hartzell Propeller Inc. recommends that the propeller be dynamically balanced to a reading of 0.2 IPS, or less.

If reflective tape is used for dynamic balancing, remove the tape immediately after balancing is completed.

Make a record in the propeller logbook of the number and location of dynamic balance weights, and static balance weights if they have been reconfigured.

D. Modifying Spinner Bulkhead to Accommodate Dynamic Balance Weights

CAUTION 1: ALL HOLE AND DYNAMIC BALANCE WEIGHT LOCATIONS MUST TAKE INTO CONSIDERATION, AND MUST AVOID, ANY POSSIBILITY OF INTERFERING WITH THE ADJACENT AIRFRAME, PROPELLER ICE PROTECTION SYSTEM, AND ENGINE COMPONENTS.

CAUTION 2: DO NOT INSTALL DYNAMIC BALANCE WEIGHTS ON THE BALANCE RING INSTALLED ON THE CYLINDER ON THE FRONT OF THE PROPELLER HUB.

Dynamic balance weights must be placed in a radial location on aluminum or composite spinner bulkheads.

(2) The radial location should be outboard of the de-ice slip ring or bulkhead doubler, if applicable, and inboard of the bend where the bulkhead creates the flange surface to attach the spinner dome.

Twelve equally spaced locations are recommended for weight attachment.
(4) Aluminum bulkhead only:
 (a) Installing nut plates (10-32 thread) of the type used to attach the spinner dome will permit convenient balance weight attachment on the engine side of the bulkhead.

(5) Alternatively, drilling holes for use with the AN3-() type bolts with self-locking nuts is permitted.

(6) Chadwick-Helmuth Manual AW-9611-2, “The Smooth Propeller”, specifies several generic bulkhead modification procedures. These are permitted if they comply with the conditions specified herein.
7. Propeller Low Pitch Setting

WARNING 1: RPM ADJUSTMENTS MUST BE MADE WITH REFERENCE TO A CALIBRATED TACHOMETER. AIRCRAFT MECHANICAL TACHOMETERS DEVELOP ERRORS OVER TIME, AND SHOULD BE PERIODICALLY RECALIBRATED TO MAKE SURE THE PROPER RPM IS DISPLAYED.

WARNING 2: LOW PITCH BLADE ANGLE ADJUSTMENTS MUST BE MADE IN ACCORDANCE WITH THE APPLICABLE TYPE CERTIFICATE OR SUPPLEMENTAL TYPE CERTIFICATE HOLDER'S MAINTENANCE DATA.

A. Low Pitch Stop - All Propeller Models

(1) The propeller low pitch stop is set at the factory to the aircraft TC or STC Holder's requirements and should not require any additional adjustment. The TC or STC Holder provides the required low pitch stop blade angle and may also provide the acceptable RPM range for a maximum power static condition. Be aware that the aircraft TC or STC holder may specify the static RPM to be less than the RPM to which the engine is rated.

(2) An overspeed at the maximum power static condition may indicate that the propeller low-pitch blade angle is set too low and that the governor is improperly adjusted.

(3) An underspeed during the maximum power static condition may be caused by any one or a combination of the following: The propeller low pitch blade angle is too high; the governor is improperly adjusted; the engine is not producing rated power.
B. Max. RPM (Static) Low Pitch Stop Adjustment

WARNING: SIGNIFICANT ADJUSTMENT OF THE LOW PITCH STOP TO ACHIEVE THE SPECIFIED STATIC RPM MAY MASK AN ENGINE POWER PROBLEM.

Refer to the following applicable procedure for accomplishing an adjustment to the low pitch angle:

1. Three Blade Non-Feathering ()(A,B)1 Series Low Pitch Stop Adjustment

 a. Refer to Figure 6-3. Loosen the jam nut while holding the low pitch stop with an allen wrench to prevent the low pitch stop from turning as the jam nut is loosened. Turning the low pitch stop in will increase blade pitch to reduce RPM, and turning the low pitch stop out will lower blade pitch and increase RPM. The low pitch stop has 24 threads per inch.
1 Turning the stop 3/4 of a turn (0.030 inch [0.762 mm] of linear travel) will change the blade pitch by approximately one degree. One degree of blade pitch will change engine RPM by approximately 140-150 RPM.

2 Turning the low pitch stop screw one revolution equals 0.042 inch (1.06 mm) of linear travel, and results in approximately 1.4 degree blade angle change. This blade angle change results in an RPM increase/decrease of approximately 200 RPM.

WARNING: A MINIMUM OF FIVE THREADS IN THE CYLINDER MUST ENGAGE THE LOW PITCH STOP AFTER ADJUSTMENT IS COMPLETED.

(b) When the low pitch stop is adjusted, torque the low pitch stop jam nut in accordance with Table 3-2, Torque Table.

(c) Repeat the Static RPM Check in the Testing and Troubleshooting chapter of this manual.
(2) Five Blade Non-Feathering (A,B)1 Series Low Pitch Stop Adjustment

(a) Refer to Figure 6-4. Loosen the jam nut while holding the low pitch stop with an wrench to prevent the low pitch stop from turning as the jam nut is loosened. Turning the low pitch stop in will increase blade pitch to reduce RPM, and turning the low pitch stop out will lower blade pitch and increase RPM. The low pitch stop has 12 threads per inch.

1 Turning the stop 3/4 of a turn (0.062 inch [1.57 mm] of linear travel) will change the blade pitch by approximately two degrees. One degree of blade pitch will change engine RPM by approximately 140-150 RPM.

Low Pitch Stop Adjustment (A,B)1 Series
Five Blade Propellers
Figure 6-4
Turning the low pitch stop screw one revolution equals 0.083 inch (2.10 mm) of linear travel, and results in approximately 2.8 degree blade angle change. This blade angle change results in an RPM increase/decrease of approximately 400 RPM.

WARNING: A MINIMUM OF FIVE THREADS IN THE CYLINDER MUST ENGAGE THE LOW PITCH STOP AFTER ADJUSTMENT IS COMPLETED.

(b) When the low pitch stop is adjusted, torque the low pitch stop jam nut in accordance with Table 3-2, Torque Table.

(c) Repeat the Static RPM Check in the Testing and Troubleshooting chapter of this manual.
(This page is intentionally blank.)
Low Pitch Stop Adjustment (A,B)2 Series
That Use a One-piece Spinner Dome
Figure 6-5
(3) Three Blade Feathering (A,B)2 Series Low Pitch Stop Adjustment, For Propellers That Use a One-piece Spinner Dome

WARNING: AIR PRESSURE [(A,B)2 SERIES PROPELLERS] MUST BE REDUCED TO 0 PSI BEFORE ANY LOW PITCH ADJUSTMENT MAY BE MADE.

(a) While holding the low pitch stop set screw with an allen wrench to prevent the low pitch stop set screw from turning, use a wrench to loosen the jam nut.

(b) Turning the low pitch stop set screw into the cap will increase blade pitch and reduce RPM, and turning the low pitch stop set screw out of the cap will lower blade pitch and increase RPM. The low pitch stop has 20 threads per inch. Refer to Figure 6-5.

1 Turning the low pitch stop set screw 2/3 of a turn equals 0.030 inch (0.76 mm) of linear travel, and will change the blade pitch by approximately one degree. One degree of blade pitch will change the engine RPM by approximately 140-150 RPM.

2 Turning the low pitch stop set screw one full turn equals 0.050 inch (1.27 mm) of linear travel and will change the blade pitch by approximately 1.7 degree. A 1.7 degree blade angle change results in an RPM increase/decrease of approximately 250 RPM.

(c) Using a clean cloth moistened with MEK CM106 or MPK CM219, carefully remove any sealant from the exposed threads of the low pitch stop set screw.

WARNING: A MINIMUM OF FIVE THREADS IN THE CAP MUST ENGAGE THE LOW PITCH STOP SET SCREW AFTER ADJUSTMENT IS COMPLETED.

(d) When the low pitch stop set screw is adjusted, apply threadlocker CM21 to the threads of the jam nut.

(e) Torque the low pitch stop jam nut in accordance with Table 3-2, Torque Table.
(f) Repeat the Static RPM Check in the Testing and Troubleshooting Chapter of this manual.

8. **Propeller High Pitch Settings** (Rev. 1)
 A. **High Pitch (Minimum RPM) Stop Adjustment**
 (1) The high pitch stop is set by Hartzell Propeller Inc. in accordance with the aircraft manufacturer’s recommendations.
 (2) The high pitch stop can only be adjusted by Hartzell or by a certified propeller repair station with the appropriate rating.

9. **Erosion Tape on Composite Blades** (Rev. 1)
 A. **General**
 (1) Some composite blades require erosion tape on the leading edge if there is no de-ice/anti-ice boot installed.
 (2) Refer to the Minor Repair chapter of Hartzell Propeller Inc. Composite Blade Field Maintenance and Minor Repair Manual 170 (61-13-70) for the following information:
 (a) Composite blade models that require erosion tape if no de-ice/anti-ice boot is installed
 (b) Erosion tape installation instructions

10. **Propeller Ice Protection Systems** (Rev. 1)
 A. **Maintenance Information**
 (1) Refer to the Anti-ice and De-ice Systems chapter of this manual for ice protection system maintenance information.
11. Tachometer Calibration (Rev. 1)

WARNING: OPERATION WITH AN INACCURATE TACHOMETER CAN CAUSE RESTRICTED RPM OPERATION AND DAMAGING HIGH STRESSES. PROPELLER LIFE WILL BE SHORTENED AND COULD CAUSE CATASTROPHIC FAILURE.

A. Important Information

(1) All engine/propeller combinations have operating conditions at which the propeller blade stresses begin to reach design limits.

(a) In most cases, these conditions occur above the maximum rated RPM of the engine.

(b) Some engine/propeller combinations have certain ranges of RPM that are less than maximum engine speed, where stresses are at a level considered too high for continuous operation. This results in a restricted operating range where continuous operation is not permitted. A placard on the instrument panel or yellow arc on the tachometer will inform the pilot to avoid operation in this range.

(c) In other cases, the limiting condition occurs at an RPM only slightly above the maximum engine RPM.

(d) For these reasons, it is very important to accurately monitor engine speed.

(2) The accuracy of the tachometer is critical to the safe operation of the aircraft.

(a) Some tachometers have been found to be in error by as much as 200 RPM.

(b) Operating the aircraft with an inaccurate tachometer could cause continued operation at unacceptably high stresses, including repeatedly exceeding the maximum engine RPM.

(c) Continuous operation in a restricted RPM range subjects the propeller to stresses that are higher than the design limits.
(d) Stresses that are higher than the design limits will shorten the life of the propeller and could cause a catastrophic failure.

B. Tachometer Calibration

(1) Hartzell Propeller Inc. recommends that propeller owners/operators calibrate the engine tachometer in accordance with the National Institute of Standards and Technology (NIST) or similar national standard (traceable).

(2) Contact Hartzell Propeller Inc. if the propeller was operated in a restricted RPM range because of a tachometer error.
ANTI-ICE AND DE-ICE SYSTEMS - CONTENTS

1. Anti-ice System Description ... 7-3
 A. Overview of an Anti-ice System .. 7-3
 B. Components of an Anti-ice System .. 7-3
 C. Anti-ice System Operation .. 7-3

2. De-ice System Description ... 7-4
 A. Overview of a De-ice System .. 7-4
 B. Components of a De-ice System .. 7-4
 C. De-ice System Operation .. 7-5

3. Operational Checks .. 7-6

4. Troubleshooting ... 7-6

5. Periodic Inspections ... 7-6
1. **Anti-ice System Description** (Rev. 1)

WARNING: CONSULT THE PILOT OPERATING HANDBOOK (INCLUDING ALL SUPPLEMENTS) REGARDING FLIGHT INTO CONDITIONS OF KNOWN ICING. THE AIRCRAFT MAY NOT BE CERTIFICATED FOR FLIGHT INTO KNOWN ICING CONDITIONS, EVEN THOUGH AN ICE PROTECTION SYSTEM IS INSTALLED.

NOTE: There are many configurations of anti-ice systems. This section provides a general overview of system operation. Consult the airframe manufacturer’s manual for a description of your specific anti-ice system and controls.

A. **Overview of an Anti-ice System**

 (1) A propeller anti-ice system prevents formation of ice on the propeller blades. The system dispenses a liquid (usually isopropyl alcohol) onto the propeller blades. This liquid mixes with moisture on the blades and lowers the freezing point of the water, allowing the water/alcohol mixture to flow off of the blades before ice forms.

 (a) Anti-ice systems must be in use before ice forms. This system is not effective for removing ice after it has formed.

B. **Components of an Anti-ice System**

 (1) A typical anti-ice system includes the following components:

 (a) Fluid tank, pump, slinger ring, blade mounted anti-icing boots, and fluid dispensing tubes located at each blade mounted anti-icing boot

C. **Anti-ice System Operation**

 (1) The anti-ice system is typically controlled by the pilot using a cockpit mounted rheostat. The rheostat controls the pump and the flow of anti-ice fluid from the fluid tank.

 (2) The anti-ice fluid is pumped through airframe mounted distribution tubing and into a rotating slinger ring that is mounted on the rear of the propeller hub.
(3) From the slinger ring, centrifugal force pushes the anti-icing fluid through the fluid dispensing tubes onto the blade mounted anti-icing boots.

(4) The anti-icing boots evenly distribute the fluid along the leading edge of the propeller blade to prevent ice from forming.

2. **De-ice System Description** (Rev. 1)

 WARNING: CONSULT THE PILOT OPERATING HANDBOOK (INCLUDING ALL SUPPLEMENTS) REGARDING FLIGHT INTO CONDITIONS OF KNOWN ICING. THE AIRCRAFT MAY NOT BE CERTIFICATED FOR FLIGHT INTO KNOWN ICING CONDITIONS, EVEN THOUGH AN ICE PROTECTION SYSTEM IS INSTALLED.

 NOTE: There are many configurations of de-ice systems. This section provides a general overview of system operation. Consult the airframe manufacturer’s manual for a description of your specific de-ice system and controls.

A. Overview of a De-ice System

 (1) A propeller de-ice system removes ice after it forms on the propeller blades. The system uses electrical heating elements to melt the ice layer next to the blade permitting the ice to be thrown from the blade by centrifugal force.

B. Components of a De-ice System

 (1) A typical de-ice system includes the following components:

 (a) ON/OFF switch(es), ammeter, timer or cycling unit, slip ring, brush blocks, and blade mounted de-ice boots.
C. De-ice System Operation

(1) The de-ice system is controlled by the pilot using a cockpit control switch. When this switch is ON, electrical power is supplied to the de-ice system.

(a) Some systems may have additional controls to adjust for different icing conditions.

 1. A mode selector switch lets the pilot set the cycling speed for heavy or light icing conditions.

 2. For twin engine aircraft, a full de-ice mode switch lets the pilot de-ice both propellers simultaneously. This switch is used when ice builds up on the propeller before the system is turned on and may only be used for short periods.

(2) The ammeter indicates current draw by the system. It is typically located near the de-ice system switches. The ammeter may indicate total system load, or in twin engine aircraft, a separate ammeter may be supplied for each propeller.

(3) The timer or cycling unit is controlled by the pilot using a cockpit control switch. When the timer/cycling unit is ON, power is applied to each de-ice boot (or boot segment) in a sequential order for a preset amount of time. This heating interval evenly de-ices the propeller.

(4) The brush block supplies electrical current to the de-ice boot on each propeller blade via a slip ring. The brush block is typically mounted on the engine just aft of the propeller. The slip ring rotates with the propeller and is typically mounted on the spinner bulkhead.

(5) The de-ice boots contain internal heating elements that melt the ice layer from the blades when electrical current is applied. De-ice boots are attached to the leading edge of each blade using adhesive.
3. **Operational Checks** (Rev. 1)
 A. De-ice and Anti-ice Systems
 (1) Perform the applicable Operational Check procedure(s) in accordance with the Check chapter in Hartzell Propeller Inc. Ice Protection System Manual 180 (30-61-80) and/or the Aircraft Maintenance Manual.

4. **Troubleshooting** (Rev. 1)
 A. De-ice and Anti-ice Systems
 (1) Refer to the applicable chapter(s) in Hartzell Propeller Inc. Ice Protection System Manual 180 (30-61-80) to troubleshoot malfunctions in Hartzell de-ice and anti-ice systems.
 (a) Part numbers for components used in Hartzell de-ice and anti-ice systems are found in Hartzell Propeller Inc. Ice Protection System Manual 180 (30-61-80).

5. **Periodic Inspections** (Rev. 1)
 A. De-ice and Anti-ice Systems
 (1) Refer to the Check chapter in Hartzell Propeller Inc. Ice Protection System Manual 180 (30-61-80) for detailed information about inspection intervals and procedures.
1. Record Keeping
 A. General
 B. Information to be Recorded
 C. Blade Damage Repair Sheets
 75A01-2()
 C75A01()
 L76A01X()
 H79A06X()
1. **Record Keeping** (Rev. 1)

 A. General

 (1) Federal Aviation Regulations require that a record be kept of any repairs, adjustments, maintenance, or required inspections performed on a propeller or propeller system.

 B. Information to be Recorded

 (1) Refer to Part 43 of the U.S. Federal Aviation Regulations for a list of information that must be recorded.

 (2) The logbook may also be used to record:

 (a) Propeller position (on aircraft)

 (b) Propeller model

 (c) Propeller serial number

 (d) Blade design number

 (e) Blade serial numbers

 (f) Spinner assembly part number

 (g) Propeller pitch range

 (h) Aircraft information (aircraft type, model, serial number and registration number).

 C. Blade Damage Repair Sheets

 NOTE: The use of the Blade Damage Repair Sheets in this chapter is at the discretion of the user.
Record of 75A01-2 Composite Blade Damage Repair

Blade Serial No. _________
Record of 75A01-2() Composite Blade Damage Repair

Blade Serial No.

0

0.5

8

12

18

24

30

Tip
(This page is intentionally blank.)
Record of C75A01 Composite Blade Damage Repair

Blade Serial No. __________
Record of L76A01X() Composite Blade Damage Repair

Blade Serial No. __________
Record of L76A01X Composite Blade Damage Repair

Blade Serial No. __________

Tip 36 30 24 18 12 8 0.5

0
Record of L76A01X() Composite Blade Damage Repair

Blade Serial No. __________

Tip

36

30

24

18

12

8

0.5

0
Record of L76A01X() Composite Blade Damage Repair

Blade Serial No. ________

0.5
0
8
12
18
24
30
36 Tip

Propeller Owner's Manual
411

RECORDS 61-00-11 Rev. 8 May/20
Record of L76A01X() Composite Blade Damage Repair.
Record of H79A06X() Composite Blade Damage Repair

Blade Serial No. __________
Record of H79A06X() Composite Blade Damage Repair

Blade Serial No. __________
Record of H79A06X() Composite Blade Damage Repair

Blade Serial No. __________